Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017306    DOI: 10.1088/1674-1056/ad0713
Special Issue: SPECIAL TOPIC — Valleytronics
TOPICAL REVIEW—Valleytronics Prev   Next  

Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials

Fei Wang(王斐)1, Yaling Zhang(张亚玲)1, Wenjia Yang(杨文佳)1, Huisheng Zhang(张会生)1,2,†, and Xiaohong Xu(许小红)1,‡
1 Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, and Research Institute of Materials Science, Shanxi Normal University, Taiyuan 030006, China;
2 College of Physics and Electronic Information, Shanxi Normal University, Taiyuan 030006, China
Abstract  Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that two-dimensional (2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides (TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs, intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valley-polarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.
Keywords:  valley polarization      valley-polarized topological states      two-dimensional material  
Received:  30 June 2023      Revised:  20 October 2023      Accepted manuscript online:  26 October 2023
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
Corresponding Authors:  Huisheng Zhang, Xiaohong Xu     E-mail:  hszhang@sxnu.edu.cn;xuxh@sxnu.edu.cn

Cite this article: 

Fei Wang(王斐), Yaling Zhang(张亚玲), Wenjia Yang(杨文佳), Huisheng Zhang(张会生), and Xiaohong Xu(许小红) Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials 2024 Chin. Phys. B 33 017306

[1] Tikhonenko F V, Horsell D W, Gorbachev R V and Savchenko A K 2008 Phys. Rev. Lett. 100 056802
[2] Shkolnikov Y P, De Poortere E P, Tutuc E and Shayegan M 2002 Phys. Rev. Lett. 89 226805
[3] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P and Shayegan M 2006 Phys. Rev. Lett. 97 186404
[4] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[5] Sham L J, Allen S J, Kamgar A and Tsui D C 1978 Phys. Rev. Lett. 40 472
[6] Koiller B, Hu X and Das Sarma S 2002 Phys. Rev. Lett. 88 027903
[7] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N and Eriksson M A 2006 Nat. Phys. 3 41
[8] Zhu Z, Collaudin A, Fauqué B, Kang W and Behnia K 2011 Nat. Phys. 8 89
[9] Isberg J, Gabrysch M, Hammersberg J, Majdi S, Kovi K K and Twitchen D J 2013 Nat. Mater. 12 760
[10] Yang C H, Rossi A, Ruskov R, Lai N S, Mohiyaddin F A, Lee S, Tahan C, Klimeck G, Morello A and Dzurak A S 2013 Nat. Commun. 4 2069
[11] Salfi J, Mol J A, Rahman R, Klimeck G, Simmons M Y, Hollenberg L C L and Rogge S 2014 Nat. Mater. 13 605
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[14] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
[15] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[16] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643
[17] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[18] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[19] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
[20] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[21] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403
[22] Zhai X and Blanter Y M 2020 Phys. Rev. B 101 155425
[23] Liu L, Zhao B, Zhang J, Bao H, Huan H, Xue Y, Li Y and Yang Z 2021 Phys. Rev. B 104 245414
[24] Vila M, Garcia J H and Roche S 2021 Phys. Rev. B 104 L161113
[25] Guo S D, Mu W Q, Wang J H, Yang Y X, Wang B and Ang Y S 2022 Phys. Rev. B 106 064416
[26] Zhan F, Ning Z, Gan L Y, Zheng B, Fan J and Wang R 2022 Phys. Rev. B 105 L081115
[27] Zhan F, Zheng B, Xiao X, Fan J, Wu X and Wang R 2022 Phys. Rev. B 105 035131
[28] Zhu Y, Cui Q, Ga Y, Liang J and Yang H 2022 Phys. Rev. B 105 134418
[29] Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 153402
[30] Lebégue S and Eriksson O 2009 Phys. Rev. B 79 115409
[31] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[32] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[33] Cheng Y C, Zhang Q Y and Schwingenschlög U 2014 Phys. Rev. B 89 155429
[34] Singh N and Schwingenschlogl U 2017 Adv. Mater. 29 1600970
[35] Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612
[36] Li Q, Zhao X, Deng L, Shi Z, Liu S, Wei Q, Zhang L, Cheng Y, Zhang L, Lu H, Gao W, Huang W, Qiu C W, Xiang G, Pennycook S J, Xiong Q, Loh K P and Peng B 2020 ACS Nano 14 4636
[37] Zhou J, Lin J, Sims H, Jiang C, Cong C, Brehm J A, Zhang Z, Niu L, Chen Y, Zhou Y, Wang Y, Liu F, Zhu C, Yu T, Suenaga K, Mishra R, Pantelides S T, Zhu Z G, Gao W, Liu Z and Zhou W 2020 Adv. Mater. 32 e1906536
[38] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P and Peng B 2020 Nano Lett. 20 2129
[39] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612
[40] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[41] Guo S Q, Wang Y Y, Wang C, Tang Z L and Zhang J 2017 Phys. Rev. B 96 245305
[42] Zhou B, Li Z, Wang J, Niu X and Luan C 2019 Nanoscale 11 13567
[43] Qi J, Li X, Niu Q and Feng J 2015 Phys. Rev. B 92 121403
[44] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlogl U 2016 Adv. Mater. 28 959
[45] Zhong D, Seyler K L, Linpeng X Y, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X 2017 Sci. Adv. 3 e1603113
[46] Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 12 757
[47] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405
[48] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A and Zeng H 2019 Nat. Commun. 10 4163
[49] Stahn J, Chakhalian J, Niedermayer C, Hoppler J, Gutberlet T, Voigt J, Treubel F, Habermeier H U, Cristiani G, Keimer B and Bernhard C 2005 Phys. Rev. B 71 140509
[50] Maccherozzi F, Sperl M, Panaccione G, Minar J, Polesya S, Ebert H, Wurstbauer U, Hochstrasser M, Rossi G, Woltersdorf G, Wegscheider W and Back C H 2008 Phys. Rev. Lett. 101 267201
[51] Golosovsky I V, Salazar-Alvarez G, Lopez-Ortega A, Gonzalez M A, Sort J, Estrader M, Surinach S, Baro M D and Nogues J 2009 Phys. Rev. Lett. 102 247201
[52] Vobornik I, Manju U, Fujii J, Borgatti F, Torelli P, Krizmancic D, Hor Y S, Cava R J and Panaccione G 2011 Nano Lett. 11 4079
[53] Song Y, Zhang Q, Mi W and Wang X 2016 Phys. Chem. Chem. Phys. 18 15039
[54] Liang X, Deng L, Huang F, Tang T, Wang C, Zhu Y, Qin J, Zhang Y, Peng B and Bi L 2017 Nanoscale 9 9502
[55] Li Q, Zhang C X, Wang D, Chen K Q and Tang L M 2022 Mater. Adv. 3 2927
[56] Zhang Y, Shinokita K, Watanabe K, Taniguchi T, Goto M, Kan D, Shimakawa Y, Moritomo Y, Nishihara T, Miyauchi Y and Matsuda K 2020 Adv. Mater. 32 e2003501
[57] Chen Y, Ma J, Liu Z, Li J, Duan X and Li D 2020 ACS Nano 14 15154
[58] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[59] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[60] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S and Gao C 2019 Science 366 983
[61] Gong C and Zhang X 2019 Science 363 eaav4450
[62] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C and Xu X 2018 Nano Lett. 18 3823
[63] Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A and Ren W 2020 Phys. Rev. B 101 125401
[64] Zhang Z, Ni X, Huang H, Hu L and Liu F 2019 Phys. Rev. B 99 115441
[65] Zhang H, Yang W, Ning Y and Xu X 2020 Phys. Rev. B 101 205404
[66] Song Y, Wang X and Mi W 2017 Adv. Electron. Mater. 3 1700245
[67] Pei Q and Mi W 2019 Phys. Rev. Appl. 11 014011
[68] Hu H, Tong W Y, Shen Y H and Duan C G 2020 J. Mater. Chem. C 8 8098
[69] Ma X, Shao X, Fan Y, Liu J, Feng X, Sun L and Zhao M 2020 J. Mater. Chem. C 8 14895
[70] Khan I, Marfoua B and Hong J 2021 NPJ 2D Mater. Appl. 5 10
[71] Zhang D, Zhang Y and Zhou B 2023 Nanoscale 15 1718
[72] Chen H, Liu R, Lu J, Zhao X, Hu G, Ren J and Yuan X 2022 J. Phys. Chem. Lett. 13 10297
[1] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shijun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[2] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[3] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[4] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[5] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[6] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[7] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[8] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[9] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[10] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
[11] Recent progress on ambipolar 2D semiconductors in emergent reconfigurable electronics and optoelectronics
Yuehao Zhao(赵月豪), Haoran Sun(孙浩然), Zhe Sheng(盛喆), David Wei Zhang(张卫),Peng Zhou(周鹏), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(12): 128505.
[12] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[13] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[14] Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
Zhi-Yuan Li(李志远) and Jian-Feng Chen(陈剑锋). Chin. Phys. B, 2023, 32(10): 104211.
[15] Valley polarization in transition metal dichalcogenide layered semiconductors: Generation, relaxation, manipulation and transport
Hui Ma(马惠), Yaojie Zhu(朱耀杰), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Xilin Zhang(张喜林), Yanbo Ren(任琰博), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2023, 32(10): 107201.
No Suggested Reading articles found!