Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017305    DOI: 10.1088/1674-1056/ace157
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires

Guang-Yu Zhu(祝光宇)1,2,†, Ji-Ai Ning(宁纪爱)1,2,†, Jian-Kun Wang(王建坤)1,2,†, Xin-Jie Liu(刘心洁)1,2, Jia-Jie Yang(杨佳洁)1,2, Ben-Chuan Lin(林本川)1,2,3,‡, and Shuo Wang(王硕)1,2,3,§
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 International Quantum Academy, Shenzhen 518048, China;
3 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Spin—momentum locking is a key feature of the topological surface state, which plays an important role in spintronics. The electrical detection of current-induced spin polarization protected by the spin—momentum locking in nonmagnetic systems provides a new platform for developing spintronics, while previous studies were mostly based on magnetic materials. In this study, the spin transport measurement of Dirac semimetal Cd3As2 was studied by three-terminal geometry, and a hysteresis loop signal with high resistance and low resistance state was observed. The hysteresis was reversed by reversing the current direction, which illustrates the spin—momentum locking feature of Cd3As2. Furthermore, we realized the on—off states of the spin signals through electric modulation of the Fermi arc via the three-terminal configuration, which enables the great potential of Cd3As2 in spin field-effect transistors.
Keywords:  topological semimetal      spin—momentum locking      quantum transport      spin field-effect transistor  
Received:  27 March 2023      Revised:  04 June 2023      Accepted manuscript online:  25 June 2023
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Hb (Quantum wires)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0309300 and 2022YFA1403700), the National Natural Science Foundation of China (Grant Nos. 12004158, 12074162, and 91964201), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030327001), Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515130005).
Corresponding Authors:  Ben-Chuan Lin, Shuo Wang     E-mail:  linbc@sustech.edu.cn;wangs6@sustech.edu.cn

Cite this article: 

Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕) Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires 2024 Chin. Phys. B 33 017305

[1] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[2] Lv B Q, Qian T and Ding H 2021 Rev. Mod. Phys. 93 025002
[3] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645
[4] Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X 5 031037
[5] Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137
[6] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301
[7] Jia Z, Li C, Li X, Shi J, Liao Z, Yu D and Wu X 2016 Nat. Commun. 7 13013
[8] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
[9] Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2015 Phys. Rev. Lett. 115 057202
[10] Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642
[11] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[12] Fang C, Lu L, Liu J and Fu L 2016 Nat. Phys. 12 936
[13] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[14] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[15] Moll P J, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J G 2016 Nature 535 266
[16] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
[17] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N and Zhang X X 2017 Nat. Commun. 8 2150
[18] Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J and Hasan M Z 2015 Science 347 294
[19] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[20] Li C H, Erve O M J, Robinson J T, Liu Y, Li L and Jonker B T 2014 Nat. Nanotechnol. 9 218
[21] Tang J, Chang L T, Kou X, Murata K, Choi E S, Lang M, Fan Y, Jiang Y, Montazeri M, Jiang W, Wang Y, He L and Wang K L 2014 Nano Lett. 14 5423
[22] Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A and Zhang X X 2018 Nat. Commun. 9 3990
[23] Ning J, Peng W, Wang W, Chen Z, Yang P, Chen Y, Zhao Y, Sun Y, Kanagaraj M, Yang L, Gao Q, Zhang J, Zhao D, Pan D, Ruan X, Li Y, Liu W, He L, Chen Z G and Xu Y 2021 Phys. Rev. B 104 035429
[24] Lin B C, Wang S, Wang A Q, Li Y, Li R R, Xia K, Yu D and Liao Z M 2020 Phys. Rev. Lett. 124 116802
[25] Han J, Richardella A, Siddiqui S A, Finley J, Samarth N and Liu L 2017 Phys. Rev. Lett. 119 077702
[26] Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y and Yang H 2017 Nat. Commun. 8 1364
[27] Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M and Tokura Y 2017 Phys. Rev. Lett. 119 137204
[28] Ando Y, Hamasaki T, Kurokawa T, Ichiba K, Yang F, Novak M, Sasaki S, Segawa K, Ando Y and Shiraishi M 2014 Nano Lett. 14 6226
[29] Lin B C, Wang S, Wang L X, Li C Z, Li J G, Yu D, Liao Z M 2017 Phys. Rev. B 95 235436
[30] Tang J, Wang C Y, Chang L T, Fan Y, Nie T, Chan M, Jiang W, Chen Y T, Yang H J, Tuan H Y, Chen L J and Wang K L 2013 Nano Lett. 13 4036
[31] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[32] Wang H L, Ma J L and Wei Q Q 2020 J. Semicond. 41 072903
[1] Electrically controllable spin filtering in zigzag phosphorene nanoribbon based normal—antiferromagnet—normal junctions
Ruigang Li(李锐岗), Jun-Feng Liu(刘军丰), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017304.
[2] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[3] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[4] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[5] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[8] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[9] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[10] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[11] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[12] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[13] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[14] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[15] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
No Suggested Reading articles found!