CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Distinct behavior of electronic structure under uniaxial strain in BaFe2As2 |
Jiajun Li(李佳俊)1,2,†, Giao Ngoc Phan1,3,†, Xingyu Wang(王兴玉)1,2,†, Fazhi Yang(杨发枝)1,2, Quanxin Hu(胡全欣)1,2, Ke Jia(贾可)1,2,4, Jin Zhao(赵金)1,2, Wenyao Liu(刘文尧)1,2, Renjie Zhang(张任杰)1,2, Youguo Shi(石友国)1,2,4,5, Shiliang Li(李世亮)1,2,5, Tian Qian(钱天)1,5, and Hong Ding(丁洪)1,3,6,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China; 6 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China |
|
|
Abstract We report a study of the electronic structure of BaFe2As2 under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at the $\varGamma$ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe2As2. These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe2As2.
|
Received: 06 April 2023
Revised: 24 May 2023
Accepted manuscript online: 25 May 2023
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101 and U1832202), the Chinese Academy of Sciences (Grant Nos. QYZDB-SSWSLH043, XDB28000000, and XDB33000000), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), and the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102). |
Corresponding Authors:
Hong Ding
E-mail: dingh@sjtu.edu.cn
|
Cite this article:
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪) Distinct behavior of electronic structure under uniaxial strain in BaFe2As2 2024 Chin. Phys. B 33 017401
|
[1] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512 [2] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [3] Kimber S A J, Kreyssig A, Zhang Y Z, Jeschke H O, Valentí R, Yokaichiya F, Colombier E, Yan J Q, Hansen T C, Chatterji T, McQueeney R J, Canfield P C, Goldman A I and Argyriou D N 2009 Nat. Mater. 8 471 [4] Torikachvili M S, Bud'ko S L, Ni N and Canfield P C 2008 Phys. Rev. B 78 104527 [5] Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001 [6] Richard P, Sato T, Nakayama K, Souma S, Takahashi T, Xu Y M, Chen G F, Luo J L, Wang N L and Ding H 2009 Phys. Rev. Lett. 102 047003 [7] Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I and Guidi T 2008 Nature 456 930 [8] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pöttgen R 2008 Phys. Rev. B 78 020503 [9] Ni N, Bud'ko S L, Kreyssig A, Nandi S, Rustan G E, Goldman A I, Gupta S, Corbett J D, Kracher A and Canfield P C 2008 Phys. Rev. B 78 014507 [10] Rosenthal E P, Andrade E F, Arguello C J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J and Pasupathy A N 2014 Nat. Phys. 10 225 [11] Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhneysen H V, Ikeda H and Ishizaka K 2014 Phys. Rev. B 90 121111 [12] Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T and Coldea A I 2015 Phys. Rev. B 91 155106 [13] Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P and Ding H 2015 Phys. Rev. B 91 214503 [14] Yi M, Lu D H, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mod S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878 [15] Pfau H, Rotundu C R, Palmstrom J C, Chen S D, Hashimoto M, Lu D H, Kemper A F, Fisher I R and Shen Z X 2019 Phys. Rev. B 99 035118 [16] Watson M D, Dudin P, Rhodes L C, Evtushinsky D V, Iwasawa H, Aswartham S, Wurmehl S, Büchner B, Hoesch M and Kim T K 2019 npi Quantum Mater. 4 36 [17] Malinowski P, Jiang Q N, Sanchez J J, Mutch J, Liu Z Y, Went P, Liu J, Ryan P J, Kim J W and Chu J H 2020 Nat. Phys. 16 1189 [18] Sanchez J J, Malinowski P, Mutch J, Liu J, Kim J W, Ryan P J and Chu J H 2021 Nat. Mater. 20 1519 [19] Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A and Takahashi T 2017 Phys. Rev. B 95 224507 [20] Massee F, Jong S D, Huang Y, Kaas J, Heumen E V, Goedkoop J B and Golden M S 2009 Phys. Rev. B 80 140507 [21] Jensen F M, Brouet V, Papalazarou E, Nicolaou A, Taleb-Ibrahimi A, Févre P L, Bertran F, Forget A and Colson D 2011 Phys. Rev. B 84 014509 [22] Hu Q X, Yang F Z, Wang X Y, Li J J, Liu W Y, Kong L Y, Li S L, Yan L, Xu J P and Ding H 2023 Phys. Rev. Mater. 7 034801 [23] Liu W Y, Hu Q X, Wang X C, Zhong Y G, Yang F Z, Kong L Y, Cao L, Li G, Peng Y, Okazaki K, Kondo T, Jin C Q, Xu J P, Gao H J and Ding H 2022 Quantum Frontiers 1 20 [24] He M Q, Wang L R, Ahn F, Hardy F, Wolf T, Adelmann P, Schmalian J, Eremin I and Meingast C 2017 Nat. Commun. 8 504 [25] Yang X L, Zhang Y, Ou H W, Zhao F J, Shen D W, Zhou B, Wei J, Chen F, Xu M, He C, Chen Y, Wang Z D, Wang X F, Wu T, Wu G, Chen X H, Arita M, Shimada K, Taniguchi M, Lu Z Y, Xiang T and Feng D L 2009 Phys. Rev. Lett. 102 107002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|