Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127310    DOI: 10.1088/1674-1056/26/12/127310
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects

Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航)
College of Physics, Chongqing University, Chongqing 401331, China
Abstract  In this paper we propose a type of new analytical method to investigate the localized states in the armchair graphene-like nanoribbons. The method is based on the tight-binding model and with a standing wave assumption. The system of armchair graphene-like nanoribbons includes the armchair supercells with arbitrary elongation-type line defects and the semi-infinite nanoribbons. With this method, we analyze many interesting localized states near the line defects in the graphene and boron-nitride nanoribbons. We also derive the analytical expressions and the criteria for the localized states in the semi-infinite nanoribbons.
Keywords:  graphene nanoribbons      tight-binding model      energy band      localized states  
Received:  20 July 2017      Revised:  12 September 2017      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  72.80.Vp (Electronic transport in graphene)  
  71.15.-m (Methods of electronic structure calculations)  
Corresponding Authors:  Hang Xie     E-mail:  xiehangphy@cqu.edu.cn

Cite this article: 

Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航) One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects 2017 Chin. Phys. B 26 127310

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Dutta S and Pati S K 2010 J. Mater. Chem. 20 8207
[4] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[5] Allain P E and Fuchs J N 2011 Eur. Phys. J. B 83 301
[6] Wu X S, Hu Y K, Ruan M, Madiomanana N K, Hankinson J, Sprinkle M, Berger C and De Heer W A 2009 Appl. Phys. Lett. 95 223108
[7] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[8] Fujita M, Wakabayashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[9] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[10] Pisani L, Chan J A, Montanari B and Harrison N M 2007 Phys. Rev. B 75 064418
[11] Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748
[12] Lu Y H, Wu R Q, Shen L, Yang M, Sha Z D, Cai Y Q, He P M and Feng Y P 2009 Appl. Phys. Lett. 94 122111
[13] Jippo H and Ohfuchi M 2013 J. Appl. Phys. 113 183715
[14] Zhao X M, Wu Y J, Chen C, Ying Y and Kou S P 2016 Chin. Phys. B 25 117303
[15] Yan W X 2013 Chin. Phys. Lett. 30 047202
[16] Hu F, Duan L and Ding J W 2012 Acta Phys. Sin. 61 077201(in Chinese)
[17] Pan C N, He J and Fang M F 2016 Chin. Phys. B 25 078102
[18] Kheyri A and Nourbakhsh Z 2016 Chin. Phys. B 25 093102
[19] Wakabayashi K, Sasaki K I, Nakanishi T and Enoki T 2010 Sci. Technol. Adv. Mater. 11 054504
[20] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[21] Kumar, T J D, Shukla A and Kumar R 2015 Phys. Rev. B 91 115428
[22] Li Y, Jiang X W, Liu Z F and Liu Z R 2010 Nano Res. 3 545
[23] Lü Y and Guo J 2010 Nano Res. 3 189
[24] Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414
[25] Jiang L W, Zheng Y S, Yi C S, Li H D and Lü T Q 2009 Phys. Rev. B 80 155454
[26] Onipko A 2008 Phys. Rev. B 78 245412
[27] Shemella P, Zhang Y, Mailman M, Ajayan P M and Nayak S K 2007 Appl. Phys. Lett. 91 042101
[28] Xie H, Kwok Y H, Zhang Y, Jiang F, Zheng X, Yan Y J and Chen G H 2013 Phys. Status Solidi B 250 2481
[29] Castro E V, Peres N M R, Santos J M B L D, Neto A H C and Guinea F 2008 Phys. Rev. Lett. 100 026802
[30] Huang W Q, Huang Z M, Cheng H Q, Miao X J, Shu Q, Liu S R, Qin C J 2012 Appl. Phys. Lett. 101 171601
[31] Hadjisavvas G, Remediakis I N and Kelires P C 2006 Phys. Rev. B 74 165419
[32] Michalak D J, Amy S R, Aureau D, Dai M, Estéve A and Chabal Y J 2010 Nature Materials 9 266271
[33] Lü X L, Liu Z, Yao H B, Jiang L W, Gao W Z and Zheng Y S 2012 Phys. Rev. B 86 045410
[34] Liu Y, Song J T, Li Y X, Liu Y and Sun Q F 2013 Phys. Rev. B. 87 195445
[35] Tang C L, Yan W H, Zheng Y S, Li G S and Li L P 2008 Nanotechnology 19 435401
[36] Modarresi M, Roknabadi M R and Shahtahmasbi N 2011 Physica E 43 1751
[37] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press), p. 148
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin—orbit stable dirac nodal line in monolayer B6O
Wen-Rong Liu(刘文荣), Liang Zhang(张亮), Xiao-Jing Dong(董晓晶), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(3): 037305.
[3] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[4] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[5] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[6] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[7] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[8] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[9] First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons
Lu-Ting Huang(黄露婷), Zheng Chen(陈铮), Yong-Xin Wang(王永欣), Yan-Li Lu(卢艳丽). Chin. Phys. B, 2017, 26(10): 103103.
[10] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[11] Electronic properties and topological phases of ThXY (X=Pb, Au, Pt and Y= Sb, Bi, Sn) compounds
Zahra Nourbakhsh, Aminollah Vaez. Chin. Phys. B, 2016, 25(3): 037101.
[12] Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons
Zhao Shang-Qian (赵尚骞), Lü Yan (吕燕), Lü Wen-Gang (吕文刚), Liang Wen-Jie (梁文杰), Wang En-Ge (王恩哥). Chin. Phys. B, 2014, 23(6): 067305.
[13] Electronic band gap and transport in graphene superlattice with a Gaussian profile potential voltage
Zhang Yu-Ping (张玉萍), Yin Yi-Heng (尹贻恒), Lü Huan-Huan (吕欢欢), Zhang Hui-Yun (张会云). Chin. Phys. B, 2014, 23(2): 027202.
[14] Curved surface effect and emission on silicon nanostructures
Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2013, 22(10): 104204.
[15] Activation of silicon quantum dots for emission
Huang Wei-Qi (黄伟其), Miao Xin-Jian (苗信建), Huang Zhong-Mei (黄忠梅), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2012, 21(9): 094207.
No Suggested Reading articles found!