|
|
Sharing quantum nonlocality in the noisy scenario |
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎)† |
College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract It was showed in [Phys. Rev. Lett. 125 090401 (2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's half of the maximally entangled pure two-qubit state. However, from practical perspectives, errors in entanglement generation and noises in quantum measurements will result in the decay of nonlocality in the scenario. In this paper, we analyze the persistency and termination of sharing nonlocality in the noisy scenario. We first obtain the two sufficient conditions under which there exist n independent Bobs who can share nonlocality with a single Alice under noisy measurements and the noisy initial two qubit entangled state. Analyzing the two conditions, we find that the influences on persistency under different kinds of noises can cancel each other out. Furthermore, we describe the change patterns of the maximal nonlocality-sharing number under the influence of different noises. Finally, we extend our investigation to the case of arbitrary finite-dimensional systems.
|
Received: 18 September 2023
Revised: 21 October 2023
Accepted manuscript online: 24 October 2023
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12271394 and 12071336) and the Key Research and Development Program of Shanxi Province (Grant No. 202102010101004). |
Corresponding Authors:
Kan He
E-mail: hekanquantum@163.com
|
Cite this article:
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎) Sharing quantum nonlocality in the noisy scenario 2024 Chin. Phys. B 33 010302
|
[1] Scarani V 2019 Bell nonlocality (London:Oxford University) pp. 4-11 [2] Bell J S 1964 Phys. Phys. Fiz. 1 195 [3] Barrett J, Linden N, Massar S, Pironio S, Popescu S and Roberts D 2005 Phys. Rev. A 71 022101 [4] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [5] Cleve R and Buhrman H 1997 Phys. Rev. A 56 1201 [6] Barrett J, Hardy L and Kent A 2005 Phys. Rev. Lett. 95 010503 [7] Masanes L, Pironio S and Acín A 2011 Nat. Commun. 2 238 [8] Colbeck R and Kent A 2011 J. Phys. A:Math. Theor. 44 095305 [9] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 [10] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312 [11] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 [12] Bell J S 2004 Speakable and Unspeakable in Quantum Mechanics, 2nd edn. (Cambridge:Cambridge University) pp. 169-172 [13] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [14] Gröblacher S, Paterek T, Kaltenbaek R, Brukner Č, M. Żkowski, Aspelmeyer M and Zeilinger A 2007 Nature 446 871 [15] Brendel J, Mohler E and Martienssen W 1992 Europhys. Lett. 20 575 [16] Hensen B, Bernien H, Dréau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abellán C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T Hand Hanson R 2015 Nature 526 682 [17] Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 Nature 409 791 [18] Silva R, Gisin N, Guryanova Y and Popescu S 2015 Phys. Rev. Lett. 114 250401 [19] Mal S, Majumdar A and Home D 2016 Mathematics 4 48 [20] Shenoy H A, Designolle S, Hirsch F, Silva R, Gisin N and Brunner N 2019 Phys. Rev. A 99 022317 [21] Das D, Ghosal A, Sasmal S, Mal S and Majumdar A S 2019 Phys. Rev. A 99 022305 [22] Datta S and Majumdar A S 2019 Phys. Rev. A 98 042311 [23] Ren C L, Feng T F, Yao D, Shi H F, Chen J L and Zhou X Q 2019 Phys. Rev. A 100 052121 [24] Kumari A and Pan A K 2019 Phys. Rev. A 100 062130 [25] Saha S, Das D, Sasmal S, Sarkar D, Mukherjee K, Roy A and Bhattacharya S S 2019 Quantum Inf. Process. 18 42 [26] Mohan K, Tavakoli A and Brunner N 2019 New J. Phys. 21 083034 [27] Brown P J and Colbeck R 2020 Phys. Rev. Lett. 125 090401 [28] Mukherjee S and Pan A K 2021 Phys. Rev. A 104 062214 [29] Hu M J, Zhou Z Y, Hu X M, Li C F, Guo G C and Zhang Y S 2018 Npj. Quantum. Inform. 4 63 [30] Schiavon M, Calderaro L, Pittaluga M, Vallone G and Villoresi P 2017 Quantum Sci. Technol. 2 015010 [31] Feng T F, Ren C L, Tian Y L, Luo M L, Shi H F, Chen J L and Zhou X Q 2021 Phys. Rev. A 102 032220 [32] Foletto G, Calderaro L, Tavakoli A, Schiavon M, Picciariello F, Cabello A, Villoresi P and Vallone G 2020 Phys. Rev. Applied 13 044008 [33] Zhang T G and Fei S M 2021 Phys. Rev. A 103 032216 [34] Hou W L, Liu X W and Ren C L 2022 Phys. Rev. A 105 042436 [35] Zhang T G, Jing N H and Fei S M 2023 Front. Phys. 18 31302 [37] Mukherjee K 2022 Phys. Rev. A 106 042206 [38] Mukherjee K, Chakrabarty I and Mylavarapu G 2023 Phys. Rev. A 107 032404 [39] Ralston J P, Jain P and Nodland B 1998 Phys. Rev. Lett. 81 26 [40] Im D G, Lee C H, Kim Y, Nha H, Kim M S, Lee S W and Kim Y H 2021 Npj Quantum. Inform. 7 86 [41] Pearle P M 1970 Phys. Rev. D 2 1418 [36] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|