Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010302    DOI: 10.1088/1674-1056/ad062d
RAPID COMMUNICATION Prev   Next  

Sharing quantum nonlocality in the noisy scenario

Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎)
College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  It was showed in [Phys. Rev. Lett. 125 090401 (2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's half of the maximally entangled pure two-qubit state. However, from practical perspectives, errors in entanglement generation and noises in quantum measurements will result in the decay of nonlocality in the scenario. In this paper, we analyze the persistency and termination of sharing nonlocality in the noisy scenario. We first obtain the two sufficient conditions under which there exist n independent Bobs who can share nonlocality with a single Alice under noisy measurements and the noisy initial two qubit entangled state. Analyzing the two conditions, we find that the influences on persistency under different kinds of noises can cancel each other out. Furthermore, we describe the change patterns of the maximal nonlocality-sharing number under the influence of different noises. Finally, we extend our investigation to the case of arbitrary finite-dimensional systems.
Keywords:  Bell nonlocality      quantum measurement      quantum noise  
Received:  18 September 2023      Revised:  21 October 2023      Accepted manuscript online:  24 October 2023
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12271394 and 12071336) and the Key Research and Development Program of Shanxi Province (Grant No. 202102010101004).
Corresponding Authors:  Kan He     E-mail:  hekanquantum@163.com

Cite this article: 

Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎) Sharing quantum nonlocality in the noisy scenario 2024 Chin. Phys. B 33 010302

[1] Scarani V 2019 Bell nonlocality (London:Oxford University) pp. 4-11
[2] Bell J S 1964 Phys. Phys. Fiz. 1 195
[3] Barrett J, Linden N, Massar S, Pironio S, Popescu S and Roberts D 2005 Phys. Rev. A 71 022101
[4] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[5] Cleve R and Buhrman H 1997 Phys. Rev. A 56 1201
[6] Barrett J, Hardy L and Kent A 2005 Phys. Rev. Lett. 95 010503
[7] Masanes L, Pironio S and Acín A 2011 Nat. Commun. 2 238
[8] Colbeck R and Kent A 2011 J. Phys. A:Math. Theor. 44 095305
[9] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[10] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[11] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[12] Bell J S 2004 Speakable and Unspeakable in Quantum Mechanics, 2nd edn. (Cambridge:Cambridge University) pp. 169-172
[13] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[14] Gröblacher S, Paterek T, Kaltenbaek R, Brukner Č, M. Żkowski, Aspelmeyer M and Zeilinger A 2007 Nature 446 871
[15] Brendel J, Mohler E and Martienssen W 1992 Europhys. Lett. 20 575
[16] Hensen B, Bernien H, Dréau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abellán C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T Hand Hanson R 2015 Nature 526 682
[17] Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 Nature 409 791
[18] Silva R, Gisin N, Guryanova Y and Popescu S 2015 Phys. Rev. Lett. 114 250401
[19] Mal S, Majumdar A and Home D 2016 Mathematics 4 48
[20] Shenoy H A, Designolle S, Hirsch F, Silva R, Gisin N and Brunner N 2019 Phys. Rev. A 99 022317
[21] Das D, Ghosal A, Sasmal S, Mal S and Majumdar A S 2019 Phys. Rev. A 99 022305
[22] Datta S and Majumdar A S 2019 Phys. Rev. A 98 042311
[23] Ren C L, Feng T F, Yao D, Shi H F, Chen J L and Zhou X Q 2019 Phys. Rev. A 100 052121
[24] Kumari A and Pan A K 2019 Phys. Rev. A 100 062130
[25] Saha S, Das D, Sasmal S, Sarkar D, Mukherjee K, Roy A and Bhattacharya S S 2019 Quantum Inf. Process. 18 42
[26] Mohan K, Tavakoli A and Brunner N 2019 New J. Phys. 21 083034
[27] Brown P J and Colbeck R 2020 Phys. Rev. Lett. 125 090401
[28] Mukherjee S and Pan A K 2021 Phys. Rev. A 104 062214
[29] Hu M J, Zhou Z Y, Hu X M, Li C F, Guo G C and Zhang Y S 2018 Npj. Quantum. Inform. 4 63
[30] Schiavon M, Calderaro L, Pittaluga M, Vallone G and Villoresi P 2017 Quantum Sci. Technol. 2 015010
[31] Feng T F, Ren C L, Tian Y L, Luo M L, Shi H F, Chen J L and Zhou X Q 2021 Phys. Rev. A 102 032220
[32] Foletto G, Calderaro L, Tavakoli A, Schiavon M, Picciariello F, Cabello A, Villoresi P and Vallone G 2020 Phys. Rev. Applied 13 044008
[33] Zhang T G and Fei S M 2021 Phys. Rev. A 103 032216
[34] Hou W L, Liu X W and Ren C L 2022 Phys. Rev. A 105 042436
[35] Zhang T G, Jing N H and Fei S M 2023 Front. Phys. 18 31302
[37] Mukherjee K 2022 Phys. Rev. A 106 042206
[38] Mukherjee K, Chakrabarty I and Mylavarapu G 2023 Phys. Rev. A 107 032404
[39] Ralston J P, Jain P and Nodland B 1998 Phys. Rev. Lett. 81 26
[40] Im D G, Lee C H, Kim Y, Nha H, Kim M S, Lee S W and Kim Y H 2021 Npj Quantum. Inform. 7 86
[41] Pearle P M 1970 Phys. Rev. D 2 1418
[36] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[1] Single-qubit quantum classifier based on gradient-free optimization algorithm
Anqi Zhang(张安琪), Kelun Wang(王可伦), Yihua Wu(吴逸华), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(10): 100308.
[2] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[3] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[4] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[5] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[6] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[7] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[8] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[9] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
[10] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[11] Promote entanglement trapping in photonic band gaps
Han Wei (韩伟), Zhang Ying-Jie (张英杰), Yan Wei-Bin (闫伟斌), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2014, 23(11): 110304.
[12] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi (贺志), Yao Chun-Mei (姚春梅). Chin. Phys. B, 2014, 23(11): 110601.
[13] The difference in noise property between the Autler–Townes splitting medium and the electromagnetically induced transparent medium
Li Zhong-Hua(李中华), Li Yuan(李媛), Dou Ya-Fang(豆亚芳), and Zhang Jun-Xiang(张俊香) . Chin. Phys. B, 2012, 21(3): 034204.
[14] Quantum nondemolition measurements of a flux qubit coupled to a noisy detector
Jiang Wei(姜伟), Yu Yang(于扬), and Wei Lian-Fu(韦联福) . Chin. Phys. B, 2011, 20(8): 080307.
[15] Macroscopic resonant tunneling in an rf-SQUID flux qubit
Cong Shan-Hua (丛山桦), Wang Yi-Wen (王轶文), Sun Guo-Zhu (孙国柱), Chen Jian (陈健), Yu Yang (于扬), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2011, 20(5): 050316.
No Suggested Reading articles found!