Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 117403    DOI: 10.1088/1674-1056/ab478c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Unconventional chiral d-wave superconducting state in strained graphene

Feng Xu(徐峰)1,2, Lei Zhang(张磊)2
1 Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
2 Department of Physics, Shaanxi University of Technology, Hanzhong 723001, China
Abstract  We consider a highly unconventional superconducting state with chiral d-wave symmetry in doped graphene under strain with the Gutzwiller-RVB method in the momentum space. It is shown that flat bands emerge in the normal state for reasonable strain. As a result, the superconducting critical temperature is found to be linearly proportional to the strength of the electron-electron interaction. Furthermore, the chiral d-wave superconducting state is shown with coexistence of the charge density wave and the pair density wave. There are different coexisting states with those orders under different doping levels.
Keywords:  chiral d-wave superconducting state      pair density wave      flat band      doped graphene  
Received:  25 February 2019      Revised:  23 September 2019      Accepted manuscript online: 
PACS:  74.70.Wz (Carbon-based superconductors)  
  74.72.Kf (Pseudogap regime)  
  74.72.Ek (Electron-doped)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804213 and 11605109).
Corresponding Authors:  Feng Xu     E-mail:  xufengxlx@snut.edu.cn

Cite this article: 

Feng Xu(徐峰), Lei Zhang(张磊) Unconventional chiral d-wave superconducting state in strained graphene 2019 Chin. Phys. B 28 117403

[1] Castro A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Kotov V N, Uchoa B, Pereira V M, Guinea F and Castro A H 2012 Rev. Mod. Phys. 84 1067
[3] Uchoa B and Castro A H 2007 Phys. Rev. Lett. 98 146801
[4] Zhou J H, Qin Tao and Shi J R 2013 Chin. Phys. Lett. 30 017401
[5] Schaffer B A M and Doniach S 2007 Phys. Rev. B 75 134512
[6] Honerkamp C 2008 Phys. Rev. Lett. 100 146404
[7] Pathak S, Shenoy V B and Baskaran G 2010 Phys. Rev. B 81 085431
[8] Lin H Q, Hu F, Huang Z and Ma T 2011 Phys. Rev. B 84 121410
[9] Lin H Q, Hu F, Huang Z and Ma T 2012 Phys. Rev. B 85 035414
[10] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158
[11] Hur K L, Honerkamp C, Scherer M M and Wu Wei 2013 Phys. Rev. B 87 094521
[12] Schmidt J, Bouhon A and Schuffer B A M 2016 Phys. Rev. B 94 104513
[13] Schaffer A M B and Carsten H 2014 J. Phys.:Condens. Matter 26 423201
[14] Uchoa B and Barlas Y 2013 Phys. Rev. Lett. 111 046604
[15] Roy B and Juricic V 2014 Phys. Rev. B 90 041413
[16] Kauppila V J, Aikebaier F and Heikkila T T 2016 Phys. Rev. B 93 214505
[17] Xu F, Chou P H, Chung T T, Lee T K and Mou C Y 2018 Phys. Rev. B 98 205103
[18] Kopnin N B, Heikkila T T and Volovik G E 2011 Phys. Rev. B 83 220503(R)
[19] Pereira V M, Castro H and Peres N M R 2009 Phys. Rev. B 80 045401
[20] Guo D, Kondo T, Machida K, Iwatake K, Okada S and Nakamura K 2012 Nat. Commun. 3 1068
[21] Tapaszto L, Dumitrica T, Kim S J, Nemes-Incze P, Hwang C and Biro L P 2012 Nat. Phys. 8 739
[22] Peotta S and Torma P 2015 Nat. Commun. 6 8944
[23] Cao Y, Fatemi V, Fang S, Watanabe K, et al. 2018 Nature 556 43
[24] Cao Y, Fatemi V, Fang S, Watanabe K, et al. 2018 Nature 556 80
[25] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[26] Fradkin E, Kivelson S A and Tranquada J M 2015 Rev. Mod. Phys. 87 457
[27] Seo K, Chen H and Hu J 2008 Phys. Rev. B 78 094510
[28] Lee P A 2014 Phys. Rev. X 4 031017
[29] Pepin C, Carvalho V S, Kloss T and Montiel X 2014 Phys. Rev. B 90 195207
[30] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Neto A H C and Crommie M F 2010 Science 329 544
[1] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[2] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[3] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[4] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[5] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[6] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[7] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星). Chin. Phys. B, 2020, 29(1): 017402.
[10] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[11] Tunneling dynamics of bosons in the diamond lattice chain
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(10): 105203.
[12] Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
Yi-Xin Zong(宗易昕), Jian-Bai Xia(夏建白), Hai-Bin Wu(武海斌). Chin. Phys. B, 2017, 26(4): 044208.
No Suggested Reading articles found!