Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104204    DOI: 10.1088/1674-1056/22/10/104204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Curved surface effect and emission on silicon nanostructures

Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建)
Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China
Abstract  The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, LO1, and LO2 lines in PL spectra due to Si–N, Si–NO, Si=O, and Si–O–Si bonds on curved surface, respectively. Si–Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the LYb line of electroluminescence (EL) emission.
Keywords:  silicon nanostructures      curved surface effect      characteristic line      localized states  
Received:  16 March 2013      Revised:  30 March 2013      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  78.45.+h (Stimulated emission)  
  78.55.Mb (Porous materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11264007).
Corresponding Authors:  Huang Wei-Qi     E-mail:  sci.wqhuang@gzu.edu.cn

Cite this article: 

Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建) Curved surface effect and emission on silicon nanostructures 2013 Chin. Phys. B 22 104204

[1] Sychugov I, Juhasz R, Valenta J and Linnros J 2005 Phys. Rev. Lett. 94 087405
[2] Qin G G, Song H Z, Zhang B R, Lin J, Duan J Q and Yao G Q 1996 Phys. Rev. B 54 2548
[3] Vahala K J 2003 Nature 424 839
[4] Hirschman K D, Tsybeskov L, Duttagupta S P and Fauchet P M 1996 Nature 384 338
[5] Fauchet P M, Ruan J, Chen H, Pavesi L, Negro L Dal, Cazzaneli M, Elliman R G, Smith N, Smoc M and Luther-Davies B 2005 Opt. Mater. 27 745
[6] Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A and Paniccia M 2005 Nature 433 725
[7] Chen S, Qian B, Chen K J, Zhang X G, Xu J, Ma Z Y, Li W and Huang X F 2007 Appl. Phys. Lett. 90 174101
[8] Yang Y, Wang C, Yang R D, Li L, Xiong F and Bao J M 2009 Chin. Phys. B 18 4906
[9] Wolkin M V, Jorne J and Fauchet P M 1999 Phys. Rev. Lett. 82 197
[10] Huang W Q, Wang H X, Jin F and Qin C J 2008 Chin. Phys. B 17 10
[11] Chen H, Shin J H, Fauchet P M, Sung J Y, Shin Jae H and Sung G Y 2007 Appl. Phys. Lett. 91 173121
[12] Huang W Q, Huang Z M, Cheng H Q, Miao X J, Shu Q, Liu S R and Qin C J 2012 Appl. Phys. Lett. 101 171601
[13] Cazzanelli M, Kovalev D, Negro L D, Gaburro Z and Pavesi L 2004 Phys. Rev. Lett. 93 207402
[14] Ruan J, Fauchet P M, Negro L D, Cazzanelli M and Pavesi L 2003 Appl. Phys. Lett. 83 5479
[15] Negro L D, Cazzanelli M, Pavesi L, Ossicini S, Pacifici D, Franzó G, Priolo F and Iacona F 2003 Appl. Phys. Lett. 82 4636
[16] Huang W Q, Xu L and Wu K Y 2007 J. Appl. Phys. 102 053517
[17] Canham L T 1990 Appl. Phys. Lett. 57 1046
[18] Pavesi L, Negro L D, Mazzoleni C, Franzo G and Priolo F 2000 Nature 408 440
[19] Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R and Qin C J 2008 Appl. Phys. Lett. 92 221910
[1] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[2] Electronic states and shape of silicon quantum dots
Huang Wei-Qi (黄伟其), Miao Xing-Jian (苗信建), Huang Zhong-Mei (黄忠梅), Cheng Han-Qiong (陈汉琼), Shu Qin (苏琴). Chin. Phys. B, 2013, 22(6): 064207.
[3] Activation of silicon quantum dots for emission
Huang Wei-Qi (黄伟其), Miao Xin-Jian (苗信建), Huang Zhong-Mei (黄忠梅), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2012, 21(9): 094207.
[4] Activation of silicon quantum dots and coupling between the active centre and the defect state of the photonic crystal in a nanolaser
Huang Wei-Qi(黄伟其), Chen Hang-Qiong(陈汉琼), Shu Qin(苏琴), Liu Shi-Rong(刘世荣), and Qin Chao-Jian(秦朝建) . Chin. Phys. B, 2012, 21(6): 064209.
[5] Different localized states of travelling-wave convection in a rectangular container
Li Guo-Dong(李国栋) and Huang Yong-Nian(黄永念). Chin. Phys. B, 2006, 15(12): 2984-2988.
[6] The penetration, diffusion and energy deposition of high-energy photon
Luo Zheng-Ming (罗正明), Gou Cheng-Jun (勾成俊), Wolfram Laub. Chin. Phys. B, 2003, 12(7): 803-808.
No Suggested Reading articles found!