Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 044208    DOI: 10.1088/1674-1056/26/4/044208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

Yi-Xin Zong(宗易昕), Jian-Bai Xia(夏建白), Hai-Bin Wu(武海斌)
State Key Laboratory of Semiconductor Materials, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters.
Keywords:  photonic crystal      plane-wave expansion method      flat band      photonic bandgap  
Received:  05 September 2016      Revised:  24 November 2016      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  02.60.Cb (Numerical simulation; solution of equations)  
  78.66.Bz (Metals and metallic alloys)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).
Corresponding Authors:  Yi-Xin Zong, Jian-Bai Xia     E-mail:  yxzong@semi.ac.cn;jbxia@semi.ac.cn

Cite this article: 

Yi-Xin Zong(宗易昕), Jian-Bai Xia(夏建白), Hai-Bin Wu(武海斌) Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals 2017 Chin. Phys. B 26 044208

[1] Joannopoulos J D, Villeneuve P R and Fan S 1997 Nature 386 143
[2] Liang Q, Li D and Han 2012 Materials 5 851
[3] Ignatov A I, Merzlikin A M, Levy M and Vinogradov A P 2012 Materials 5 1055
[4] Thapa K B, Kumar R and Gupta A K 2010 J. Optoelectron. Adv. Mater. 12 1670
[5] Qi L M, Yang Z Q, Lan F, Gao X and Li D Z 2010 Chin. Phys. B 19 034210
[6] Naimi E K and Vekilov Y K 2015 Solid State Commun. 209 15
[7] Song L, Zhong S and Liu S 2009 Plasma Sci. Technol. 11 14
[8] Sakai O, Sakaguchi T and Tachibana K 2005 Appl. Phys. Lett. 87 241505
[9] Fan C Z, Wang J Q, He J N, Ding P and Liang E J 2010 Phys. Rev. Lett. 104 087401
[10] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[11] John S 1987 Phys. Rev. Lett. 58 2486
[12] Wang L H and Yang S H 2013 IEEE 2nd ISNE 25
[13] Akahane Y, Asano T, Song B S and Noda S 2003 Nature 425 944
[14] Arpin K A, Mihi A, Johnson H T, Baca A J, Rogers J A, Lewis J A and Braun P V 2010 Adv. Mater. 22 1084
[15] Erdiven U 2015 Optik 126 2044
[16] Munera N and Herrera R A 2016 Opt. Commun. 368 185
[17] Wang D, Wu J Z and Zhang J X W 2016 Chin. Phys. B 25 064202
[18] Shang G L, Fei G T and Li D Z 2015 J. Phys. D: Appl. Phys. 48 435304
[19] Ye H, Zhang J Q N, Yu Z Y, Wang D L and Chen Z H 2015 Chin. Phys. B 24 094214
[20] Lourtioz J M, Benisty H, Gerard J M, Maystre D and Tchelnokov A 2008 Photonic Crystals: Towards Nanoscale Photonic Devices (Berlin: Springer Press) pp. 198-224
[21] Gao B, Shi Z and Boyd R W 2015 Opt. Express 23 6491
[22] Sakoda K 2005 Optical properties of photonic crystals, 2nd edn. (Berlin: Springer Press) pp. 151-154
[23] Inoue K, Kawai N and Sugimoto Y 2002 Phys. Rev. B 65 121308
[24] Altug H and Vuckovic J 2005 Appl. Phys. Lett. 86 111102
[25] Krauss T F, De La Rue R and Band S 1996 Nature 383 699
[26] Notomi M, Yamada K, Shinya A, Takahashi J, Takahashi C and Yokohama I 2001 Phys. Rev. Lett. 87 253902
[27] Zhang T, Shao W W, Li K, Liu X and Xu J 2007 Opt. Commun. 281 1286
[28] Maier S A 2007 Plasmonics: Fundamentals and Applications (London: Springer Press) pp. 14-19
[29] Toader O and John S 2004 Phys. Rev. E 70 046605
[30] Johnson S G and Joannopoulos J D 2001 Opt. Express 8 173
[31] Shi S, Chen C and Prather D W 2004 J. Opt. Soc. Am. A 21 1769
[32] Shen L F, He L and Wu L 2002 Acta Phys. Sin. 51 1133 (in Chinese)
[33] Zong Y X and Xia J B 2015 Sci. China-Phys. Mech. Astron. 58 077201
[34] Zong Y X and Xia J B 2015 J. Phys. D: Appl. Phys. 48 355103
[35] Orlov A A, Zhukovsky S V and Iorsh I V 2014 Photon. Nanostruct. 12 213
[36] Scalora M, Bloemer M J, Manka A S, Pethel S D, Dowling J P and Bowden C M 1998 J. Appl. Phys. 83 2377
[37] Cheng C and Xu C 2009 J. Appl. Phys. 106 033101
[38] Xiao S, Shen L and He S 2003 Phys. Lett. A 313 132
[39] Sakoda K, Kawai N, Ito T, Chutinan A, Noda S, Mitsuyu T and Hirao K 2001 Phys. Rev. B 64 045116
[40] Raman A and Fan S 2010 Phys. Rev. Lett. 104 087401
[41] Chen J, Tang J, Han P and Chen J 2009 J. Semicond. 30 043001
[42] Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S and McKenney A 1999 LAPACK Users' Guide, 2nd edn. (Philadelphia SIAM Press) pp. 14-53
[43] Sakoda K 1997 J. Opt. Soc. Am. B 8 1961
[44] Sakoda K 1999 Opt. Express 4 167
[45] Sakoda K, Ohtaka K and Ueta T 1999 Opt. Express 4 481
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[9] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[10] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[11] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[12] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[13] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[14] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[15] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
No Suggested Reading articles found!