PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Tunneling dynamics of bosons in the diamond lattice chain |
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎) |
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract We analyze the effect of tilting and artificial magnetic flux, on the energy bands structure for the system and the corresponding tunneling dynamics for bosons with various initial configurations in the diamond lattice chain, where intriguing and significant phenomena occur, including Landau-Zener tunneling, Bloch oscillations, and localization phenomenon. Both vertical tilting and artificial magnetic flux may alter the structure of energy levels (dispersion structure or flat band), and enforce the occurrence of Landau-Zener tunneling, which scans the whole of the Bloch bands. We find that, transitions among Landau-Zener tunneling, Bloch oscillations, and localization phenomenon, are not only closely related to the energy bands structure, but also depends on the initial configuration of bosons in the diamond lattice chain. As a consequence, Landau-Zener tunneling, Bloch oscillations, and localization phenonmenon of bosons always counteract and are complementary with each other in the diamond lattice chain.
|
Received: 27 June 2018
Revised: 02 August 2018
Accepted manuscript online:
|
PACS:
|
52.27.Ep
|
(Electron-positron plasmas)
|
|
52.38.Hb
|
(Self-focussing, channeling, and filamentation in plasmas)
|
|
98.70.Rz
|
(γ-ray sources; γ-ray bursts)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11475027, 11865014, 11865014, 11274255, and 11305132), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of the Higher Education of Gansu Province, China (Grant No. 2016A-005). |
Corresponding Authors:
Ju-Kui Xue
E-mail: xuejk@nwnu.edu.cn
|
Cite this article:
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎) Tunneling dynamics of bosons in the diamond lattice chain 2018 Chin. Phys. B 27 105203
|
[1] |
Juliá D B, Dagnino D, Lewenstein M, Martorell J and Polls A 2010 Phys. Rev. A 81 023615
|
[2] |
Chatterjee B, Brouzos I, Cao L and Schmelcher P 2012 Phys. Rev. A 85 013611
|
[3] |
Zhu Q, Zhang Q and Wu B 2015 J. Phys. B:At. Mol. Opt. Phys. 48 045301
|
[4] |
Chang N N, Yu Z F, Zhang A X and Xue J K 2017 Chin. Phys. B 26 115202
|
[5] |
Morsch O, Müller J H, Cristiani M, Ciampini D and Arimondo E 2001 Phys. Rev. Lett. 87 140402
|
[6] |
Jona M L, Morsch O, Cristiani M, et al. 2003 Phys. Rev. Lett. 91 230406
|
[7] |
Konotop V V, Kevrekidis P G and Salerno M 2005 Phys. Rev. A 72 023611
|
[8] |
Loladze V, Khomeriki R 2017 Phys. Rev. E 95 042204
|
[9] |
Anderson M H, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[10] |
Anderson B P and Kasevich M A 1998 Science 282 1686
|
[11] |
Schmitt J, Damn T, Dung D, Vewinger F, Klaers J and Weitz M 2014 Phys. Rev. Lett. 112 030401
|
[12] |
Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353
|
[13] |
Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys 83 1405
|
[14] |
Spreeuw R J C, Druten N J, Beijersbergen M W, Eliel E R and Woerdman J P 1990 Phys. Rev. Lett. 65 2642
|
[15] |
Bouwmeester D, Dekker N H, Dorsselaer F E V, Schrama C A, Visser P M and Woerdman J P 1995 Phys. Rev. A 51 646
|
[16] |
Wu B and Niu Q 2000 Phys. Rev. A 61 023402
|
[17] |
Liu J, Fu L, Ou B Y, Chen S G, Choi D I, Wu B and Niu Q 2002 Phys. Rev. A 66 023404
|
[18] |
Chen Y A, et al. 2011 Nat. Phys. 7 61
|
[19] |
Asamitsu A, Tomioka Y, Kuwahara H and Tokura Y 1997 Nature 388 50
|
[20] |
Miyano K, Tanaka T, Tomioka Y and Tokura Y 1997 Phys. Rev. Lett. 78 4257
|
[21] |
Yamanouchi S, Taguchi Y and Tokura Y 1999 Phys. Rev. Lett. 83 5555
|
[22] |
Oka T and Aoki H 2005 Phys. Rev. Lett. 95 137601
|
[23] |
Sugimoto N, Onoda S and Nagaosa N 2008 Phys. Rev. B 78 155104
|
[24] |
Cristiani M, Morsch O, Müller J H, Ciampini D and Arimondo E 2002 Phys. Rev. A 65 063612
|
[25] |
Jona-Lasinio M, Morsch O, Cristiani M, Malossi N, Müller J H, Courtade E, Anderlini M and Arimondo E 2003 Phys. Rev. Lett. 91 230406
|
[26] |
Struck J, Olschlager C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K andWindpassinger P 2012 Phys. Rev. Lett. 108 225304
|
[27] |
Zheng Y, Feng S P and Yang S J 2017 Phys. Rev. A 96 063613
|
[28] |
Zheng Y, Feng S P and Yang S J 2018 Phys. Rev. A 97 043627
|
[29] |
Lopes A A and Dias R G 2011 Phys. Rev. B 84 085124
|
[30] |
Rojas O, Souza D S M and Ananikian N S 2012 Phys. Rev. E 85 061123
|
[31] |
Khomeriki R and Flach S 2016 Phys. Rev. Lett 116 245301
|
[32] |
Zegadlo K, Dror N and Hung N V 2017 Phys. Rev. E 96 012204
|
[33] |
Ramachandran A, Andreanov A and Flach S 2017 Phys. Rev. B 96 161104
|
[34] |
Nguyen Hong-Son and Tran Minh-Tien 2016 Phys. Rev. B 94 125106
|
[35] |
Derzhko O, Richter J and Maksymenko M 2015 Int. J. Mod. Phys. B 29 1530007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|