Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124302    DOI: 10.1088/1674-1056/acf5cf
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Energy-distributable waterborne acoustic launcher for directional sensing

Tian Yang(杨天)1, Wenting Gao(高文婷)2, Shida Fan(范世达)1, Jie Ren(任捷)2, and Tianzhi Yang(杨天智)1,†
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
2 Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
Abstract  Highly directional launch and intensity adjustment of underwater acoustic signals are crucial in many areas such as abyssal navigation, underwater signal communication, and detection for marine biology. Inspired by the phenomenon that aquatic animals like dolphins detect and track prey with high resolution, we propose an energy-distributable directional sensing strategy which can achieve parallel needle-like transmitting sound beams with adjustable energy based on out-coupling valley-polarized edge states. The acoustic spin angular momentum and energy flow distribution at different interfaces inside the phononic crystal are provided and they show tight coupling. Furthermore, a sound beam with a width of 20° and an acoustic intensity enhancement factor ≈6.6 are observed in the far field. As an application, we show that this device can be used as an acoustic energy distributor. This communication pattern with excellent functionalities and performance provides a desirable idea for high-energy-level directional collimated underwater sensing and underwater acoustic energy distribution.
Keywords:  underwater sound      acoustic sensing and acquisition      metamaterials  
Received:  24 May 2023      Revised:  24 August 2023      Accepted manuscript online:  01 September 2023
PACS:  43.30.+m (Underwater sound)  
  43.60.Vx (Acoustic sensing and acquisition)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12232014 and 12072221) and the Fundamental Research Funds for the Central Universities (Grant No.2013017).
Corresponding Authors:  Tianzhi Yang     E-mail:  yangtianzhi@me.neu.edu.cn

Cite this article: 

Tian Yang(杨天), Wenting Gao(高文婷), Shida Fan(范世达), Jie Ren(任捷), and Tianzhi Yang(杨天智) Energy-distributable waterborne acoustic launcher for directional sensing 2023 Chin. Phys. B 32 124302

[1] Guo Y, Li B and Yin X 2020 Phys. Rev. Appl. 13 044009
[2] Zhao J, Cui X, Bonello B, Djafari-Rouhani B, Yuan W, Pan Y, Ren J, Zhang X and Zhong Z 2021 J. Mech. Phys. Solids 150 104357
[3] Zhao J, Chen Z N, Li B and Qiu C W 2015 J. Appl. Phys. 117 214507
[4] Zhu X, Ramezani H, Shi C, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042
[5] Shen Y, Zhu X, Cai F, Ma T, Li F, Xia X, Li Y, Wang C and Zheng H 2019 Phys. Rev. Appl. 11 034009
[6] Zhao J, Li B, Chen Z and Qiu C W 2013 Sci. Rep. 3 2537
[7] Lin H, Xu Z Q, Cao G, Zhang Y, Zhou J, Wang Z, Wan Z, Liu Z, Loh K P, Qiu C W, Bao Q and Jia B 2020 Sci. Appl. 9 137
[8] Hou Z, Ding H, Wang N, Fang X and Li Y 2021 Phys. Rev. Appl. 16 014002
[9] Yu G, Qiu Y, Li Y, Wang X and Wang N 2021 Phys. Rev. Appl. 15 064064
[10] Yang T, Lin Z and Yang T 2023 Adv. Eng. Mater. 25 200805
[11] Zhao J, Li B, Chen Z N and Qiu C W 2013 Appl. Phys. Lett. 103 151604
[12] Zhu X, Huang G, Feng Z and Wu J 2019 Sensors 20 186
[13] Zhang D, Ren J, Zhou T and Li B 2019 New J. Phys. 21 093033
[14] Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F and Liu Z 2019 Nat. Phys. 15 352
[15] Lu J, Qiu C, Ke M and Liu Z 2016 Phys. Rev. Lett. 116 093901
[16] Ye L, Qiu C, Lu J, Wen X, Shen Y, Ke M, Zhang F and Liu Z 2017 Phys. Rev. B 95 174106
[17] Fan X, Xia T, Qiu H, Zhang Q and Qiu C 2022 Phys. Rev. Lett. 128 216403
[18] Long Y, Ren J and Chen H 2018 Proc. Natl. Acad. Sci. USA 115 9951
[19] Yang C, Tan Y T, Chen H and Ren J 2021 J. Appl. Phys. 129 135106
[20] Long Y, Ge H, Zhang D, Xu X, Ren J, Lu M H, Bao M, Chen H and Chen Y F 2020 Nat. Sci. Rev. 7 1024
[21] Long Y, Zhang D, Yang C, Ge J, Chen H and Ren J 2020 Nat. Commun. 11 4716
[22] Zhang Z, Tian Y, Wang Y, Gao S, Cheng Y, Liu X and Christensen J 2018 Adv. Mater. 30 1803229
[23] Zheng S, Duan G and Xia B 2020 Int. J. Mech. Sci. 174 105463
[24] Zhu W, Long Y, Chen H and Ren J 2019 Phys. Rev. B 99 115410
[25] Zhang F, MacDonald A H and Mele E J 2013 Proc. Natl. Acad. Sci. USA 110 10546
[26] Ma T and Shvets G 2016 New J. Phys. 18 025012
[27] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[28] Peano V, Brendel C, Schmidt M and Marquardt F 2015 Phys. Rev. X 5 031011
[29] Ezawa M 2013 Phys. Rev. B 88 161406
[30] Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J and Zhang X 2019 Nat. Sci. Rev. 6 707
[31] Yuan W, Yang C, Zhang D, Long Y, Pan Y, Zhong Z, Chen H, Zhao J and Ren J 2021 Nat. Commun. 12 6954
[1] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[2] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators
Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥). Chin. Phys. B, 2023, 32(12): 124303.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[7] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[8] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[9] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[10] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[11] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[12] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[13] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[14] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[15] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
No Suggested Reading articles found!