Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 125204    DOI: 10.1088/1674-1056/acf449
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Speeding-up direct implicit particle-in-cell simulations in bounded plasma by obtaining future electric field through explicitly propulsion of particles

Haiyun Tan(谭海云)1,2, Tianyuan Huang(黄天源)1,2, Peiyu Ji(季佩宇)2,3, Mingjie Zhou(周铭杰)1,2, Lanjian Zhuge(诸葛兰剑)4, and Xuemei Wu(吴雪梅)1,2,†
1 School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China;
2 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China;
3 School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China;
4 Analysis and Testing Center, Soochow University, Suzhou 215123, China
Abstract  The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics. However, it is time-consuming to obtain the future electromagnetic field in such a method since the field equations contain time-dependent matrix coefficients. In this work, we propose to explicitly push particles and obtain the future electromagnetic field based on the information about the particles in the future. The new method retains the form of implicit particle pusher, but the future field is obtained by solving the traditional explicit equation. Several numerical experiments, including the motion of charged particle in electromagnetic field, plasma sheath, and free diffusion of plasma into vacuum, are implemented to evaluate the performance of the method. The results demonstrate that the proposed method can suppress finite-grid-instability resulting from the coarse spatial resolution in electron Debye length through the strong damping of high-frequency plasma oscillation, while accurately describe low-frequency plasma phenomena, with the price of losing the numerical stability at large time-step. We believe that this work is helpful for people to research the bounded plasma by using particle-in-cell simulations.
Keywords:  particle-in-cell      direct implicit simulation      finite-grid-instability  
Received:  07 June 2023      Revised:  25 July 2023      Accepted manuscript online:  28 August 2023
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.27.Aj (Single-component, electron-positive-ion plasmas)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03050001), also partly by the National Natural Science Foundation of China (Grant No.12175160), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Corresponding Authors:  Xuemei Wu     E-mail:  xmwu@suda.edu.cn

Cite this article: 

Haiyun Tan(谭海云), Tianyuan Huang(黄天源), Peiyu Ji(季佩宇), Mingjie Zhou(周铭杰), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅) Speeding-up direct implicit particle-in-cell simulations in bounded plasma by obtaining future electric field through explicitly propulsion of particles 2023 Chin. Phys. B 32 125204

[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley)
[2] Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H and Wang Y N 2022 Chin. Phys. B. 31 085202
[3] Birdsall C K and Langdon A B 2005 Plasma physics via computer simulation (Taylor and Francis)
[4] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
[5] Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001
[6] Guo C Z, Wu H, Peng Y L, Wang Z J, Jiang W and Zhang Y 2022 J. Phys. D: Appl. Phys. 55 465202
[7] Wang Y G, Ma X Q, Bouwman D, Liu Z R, Ebert U and Zhang X N 2022 Plasma Sources Sci. Technol. 31 105015
[8] Zuo C Y, Gao F, Dai Z L and Wang Y N 2018 Acta Phys. Sin. 67 225201 (in Chinese)
[9] Kawamura E, Birdsall C K and Vahedi V 2000 Plasma Sources Sci. Technol. 9 413
[10] Deluzet F, Fubiani G, Garrigues L, Guillet C and Narski J 2022 ESAIM: M2AN 56 1809
[11] Juhasz Z, Durian J, Derzsi A, Matejcik S, Donko Z and Hartmann P 2021 Comput. Phys. Commun. 263 107913
[12] Yu K M, Kumar P, Yuan S H, Cheng A Q and Samulyak R 2022 Comput. Phys. Commun. 277 108396
[13] Wang H Y, Jiang W and Wang Y N 2009 Comput. Phys. Commun. 180 1305
[14] Adam J C, Gourdin-Serveniere A and Langdon A B 1982 J. Comput. Phys. 47 229
[15] Taccogna F and Minelli P 2018 Phys. Plasmas 25 061208
[16] Tonneau R, Pflug A and Lucas S 2020 Plasma Sources Sci. Technol. 29 115007
[17] Szabo J, Warner N, Martinez-Sanchez M and Batishchev O 2014 J. Propul. Power. 30 197
[18] Revel A, Minea T and Costin C 2018 Plasma Sources Sci. Technol. 27 105009
[19] Welch D R, Rose D V, Clark R E, Genoni T C and Hughes T P 2004 Comput. Phys. Commun. 164 183
[20] Markidis S, Lapenta G and Rizwan-uddin 2010 Math. Comput. Simulat. 80 1509
[21] Vahedi V, DiPeso G, Birdsall C K, Lieberman M A and Rognlien T D 1993 Plasma Sources Sci. Technol. 2 261
[22] Eremin D 2022 J. Comput. Phys. 452 110934
[23] Gonzalez-Herrero D, Micera A, Boella E, Park J and Lapenta G 2019 Comput. Phys. Commun. 236 153
[24] Lapenta G 2017 J. Comput. Phys. 334 349
[25] Lei L, Jin X L, Li J B, Li L X and Li B 2022 Phys. Plasmas 29 073904
[26] Garrigues L, Du Montcel B T, Fubiani G, Bertomeu F, Deluzet F and Narski J 2021 J. Appl. Phys. 129 153303
[27] Tskhakaya D, Matyash K, Schneider R and Taccogna F 2007 Contrib. Plasma Phys. 47 563
[28] Friedman A 1990 J. Comput. Phys. 90 292
[29] Langdon A B, Cohen B I and Friedman A 1983 J. Comput. Phys. 51 107
[30] Cohen B I, Langdon A B and Friedman A 1982 J. Comput. Phys. 46 15
[31] Bai J W, Cao Y, Chu Y C and Zhang X 2018 Comput. Math. Appl. 75 1887
[32] Dendy R O 1990 Plasma dynamics (Oxford University Press)
[33] Isaacson E and Keller H B 1994 Analysis of numerical methods (Courier Corporation)
[34] Liu H T, Quan L L, Chen Q, Zhou S J and Cao Y 2020 Phys. Rev. E 101 043307
[35] Friedman A, Parker S E, Ray S L and Birdsall C K 1991 J. Comput. Phys. 96 54
[36] Ryabinkin A N, Serov A O, Pal A F, Mankelevich Y A, Rakhimov A T and Rakhimova T V 2021 Plasma Sources Sci. Technol. 30 055009
[1] Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field
Yao-Ting Wang(汪耀庭), Xin-Li Sun(孙鑫礼), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2023, 32(9): 095201.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Efficient ion acceleration driven by a Laguerre-Gaussian laser in near-critical-density plasma
Jia-Xiang Gao(高嘉祥), Meng Liu(刘梦), and Wei-Min Wang(王伟民). Chin. Phys. B, 2023, 32(10): 105202.
[4] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[5] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[6] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[7] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[8] Physical properties of relativistic electron beam during long-range propagation in space plasma environment
Bi-Xi Xue(薛碧曦), Jian-Hong Hao(郝建红), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2021, 30(10): 104103.
[9] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[10] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[11] Hybrid-PIC/PIC simulations on ion extraction by electric field in laser-induced plasma
Xiao-Yong Lu(卢肖勇), Cheng Yuan(袁程), Xiao-Zhang Zhang(张小章), Zhi-Zhong Zhang(张志忠). Chin. Phys. B, 2020, 29(4): 045201.
[12] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[13] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[14] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[15] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
No Suggested Reading articles found!