Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 075204    DOI: 10.1088/1674-1056/28/7/075204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge

Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖)
College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  

The influence of vibration on the spatiotemporal structure of the pattern in dielectric barrier discharge is studied for the first time. The spatiotemporal structure of the pattern investigated by an intensified charge-coupled device shows that it is an interleaving of three sublattices, whose discharge sequence is small rods-halos-large spots in each half-cycle of the applied voltage. The result of the photomultiplier indicates that the small rods are composed of moving filaments. The moving mode of the moving filaments is determined to be antisymmetric stretching vibration by analyzing a series of consecutive images taken by a high-speed video camera. The antisymmetric stretching vibration affects the distribution of wall charges and leads to the halos. Furthermore, large spots are discharged only at the centers of the squares consisting of vibrating filaments. The vibration mechanism of the vibrating filaments is dependent on the electric field of wall charges.

Keywords:  antisymmetric stretching vibration      pattern      dielectric barrier discharge  
Received:  28 January 2019      Revised:  22 March 2019      Accepted manuscript online: 
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  47.54.-r (Pattern selection; pattern formation)  
  52.80.Tn (Other gas discharges)  
Corresponding Authors:  Li-Fang Dong     E-mail:  donglf@mail.hbu.edu.cn

Cite this article: 

Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖) Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge 2019 Chin. Phys. B 28 075204

[1] Perinet N, Juric D and Tuckerman L S 2012 Phys. Rev. Lett. 109 164501
[2] Li Y R, Ouyang Y Q and Hu Y P 2012 Phys. Rev. E 86 046323
[3] Sánchez-Álvarez J J, Serre E, del Arco E C and Busse F H 2005 Phys. Rev. E 72 036307
[4] Wu R C, Zhou Y, Shao Y and Chen L P 2017 Physica A 482 597
[5] Hecht I, Kessler D A and Levine H 2010 Phys. Rev. Lett. 104 158301
[6] Li X Z, Bai Z G, Li Y, He Y F and Zhao K 2015 Chin. Phys. B 24 048201
[7] Liehr A W, Moskalenko A S, Astrov Y A, Bode M and Purwins H G 2004 Eur. Phys. J. B 37 199
[8] Purwins H G and Berkemeier J 2011 IEEE Trans. Plas. Sci. 39 2116
[9] Fu H Y, Dong L F, Zhao Y and Liu Y 2015 J. Phys. Soc. Jpn. 84 044501
[10] Stollenwerk L 2010 Plasma Phys. Control. Fusion 52 124017
[11] Wei L Y, Dong L F, Fan W L, Liu F C, Feng J Y and Pan Y Y 2018 Sci. Rep. 8 3835
[12] Bernecker B, Callegari T, Blanco S, Fournier R and Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808
[13] Gurevich E L, Zanin A L, Moskalenko A S and Purwins H G 2003 Phys. Rev. Lett. 91 154501
[14] Guikema J, Miller N, Niehof J, Klein M and Walhout M 2000 Phys. Rev. Lett. 85 3817
[15] Zhao Y, Dong L F, Wang Y J, Fu H Y and Gao Y N 2014 J. Phys. Soc. Jpn. 83 124501
[16] Fan W L and Dong L F 2013 Chin. Phys. B 22 014213
[17] Fan F, Jia Y, Liu F C and He Y F 2016 Chin. Phys. B 25 104702
[18] Wei L Y, Dong L F, Feng J Y, Liu W B, Fan W L and Pan Y Y 2016 J. Phys. D: Appl. Phys. 49 185203
[19] Liu Y, Dong L F, Niu X J, Gao Y N and Zhang C 2015 Phys. Plasmas 22 103501
[20] Wang Y J, Dong L F, Liu W B, He Y F and Li Y H 2014 Phys. Plasmas 21 073505
[21] Dong L F, Fan W L, He Y F, Liu F C, Li S F, Gao R L and Wang L 2006 Phys. Rev. E 73 066206
[22] Dong L F, ShenZ K, Li B and Bai Z G 2013 Phys. Rev. E 87 042914
[23] Zanin A L, Gurevich E L, Moskalenko A S, Bödeker H U and Purwins H G 2004 Phys. Rev. E 70 036202
[24] Dong L F, Li B, Shen Z K, Wang Y J and Lu N 2012 Phys. Rev. E 86 036211
[25] Cui Y Q, Dong L F, Gao X, Wei L Y, Liu W B, Feng J Y and Pan Y Y 2017 Phys. Plasmas 24 083513
[26] Dong L F, Shang J, He Y F, Bai Z G, Liu L and Fan W L 2012 Phys. Rev. E 85 066403
[27] Melzer A, Klindworth M and Piel A 2001 Phys. Rev. Lett. 87 115002
[1] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[2] Drop impact on substrates with heterogeneous stiffness
Yang Cheng(成阳), Jian-Gen Zheng(郑建艮), Chen Yang(杨晨), Song-Lei Yuan(袁松雷), Guo Chen(陈果), and Li-Yu Liu(刘雳宇). Chin. Phys. B, 2022, 31(8): 084702.
[3] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[4] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[5] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[6] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[7] Pattern transition and regulation in a subthalamopallidal network under electromagnetic effect
Zilu Cao(曹子露), Lin Du(都琳), Honghui Zhang(张红慧), Yuzhi Zhao(赵玉枝), Zhuan Shen(申转), and Zichen Deng(邓子辰). Chin. Phys. B, 2022, 31(11): 118701.
[8] Characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh-Bénard convection
Ming-Wei Fang(方明卫), Jian-Chao He(何建超), Zhan-Chao Hu(胡战超), and Yun Bao(包芸). Chin. Phys. B, 2022, 31(1): 014701.
[9] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[10] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[11] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[12] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[13] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[14] Pitman-Yor process mixture model for community structure exploration considering latent interaction patterns
Jing Wang(王晶) and Kan Li(李侃). Chin. Phys. B, 2021, 30(12): 120518.
[15] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
No Suggested Reading articles found!