CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism |
Xue-Meng Nan(南雪萌)1, Chuan Qu(屈川)1, Peng-Bin He(贺鹏斌)2, and Zai-Dong Li(李再东)1,† |
1 Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China; 2 School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract In the field of ultrafast magnetism, i.e., subpicosecond or femtosecond time scales, the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation. In terms of this equation, the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field. We can find that there is a critical value for the inertia parameter τc, which is affected by the damping and anisotropy parameter of the system. When the inertial parameter factor τ<τc, the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism. When τ>τc, the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism. Moreover, it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor, as τ<τc/2, which increases with inertial factor τ as τ>τc/2. Finally, with the joint action of damping and anisotropy, compared with fast magnetism, we find that the limit value of the magnetization reversal field has rich variation characteristics, i.e., there is not only a linear and proportional relationship, but also an inverse relationship, which is very significant for the study of ultrafast magnetism.
|
Received: 07 January 2023
Revised: 28 April 2023
Accepted manuscript online: 10 May 2023
|
PACS:
|
75.78.-n
|
(Magnetization dynamics)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.25.Rb
|
(Spin relaxation and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61774001), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No.KF202203), the NSF of Changsha City (Grant No.kq2208008), and the NSF of Hunan Province (Grant No.2023JJ30116). |
Corresponding Authors:
Zai-Dong Li
E-mail: lizd@email.tjut.edu.cn
|
Cite this article:
Xue-Meng Nan(南雪萌), Chuan Qu(屈川), Peng-Bin He(贺鹏斌), and Zai-Dong Li(李再东) Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism 2023 Chin. Phys. B 32 127506
|
[1] Neeraj K, Awari N, Kovalev S, Polley D, Zhou Hagström N, Arekapudi S S P K, Semisalova A, Lenz K, Green B, Deinert J C, Ilyakov I, Chen M, Bawatna M, Scalera V, d'Aquino M, Serpico C, Hellwig O, Wegrowe J E, Gensch M and Bonetti S 2021 Nat. Phys. 17 245 [2] Vlasov V S, Lomonosov A M, Golov A V, Kotov L N, Besse V, Alekhin A, Kuzmin D A, Bychkov I V and Temnov V V 2020 Phys. Rev. B 101 024425 [3] Sun Z Z and Wang X R 2005 Phys. Rev. B 71 174430 [4] Böttcher D and Henk J 2012 Phys. Rev. B 86 020404 [5] Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419 [6] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M and Aeschlimann M 2010 Nat. Mater. 9 259 [7] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M and Koopmans B 2008 Nat. Phys. 4 855 [8] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 Phys. Rev. Lett. 76 4250 [9] Fähnle M, Steiauf D and Illg C 2011 Phys. Rev. B 84 172403 [10] Fähnle M, Steiauf D and Illg C 2013 Phys. Rev. B 88 219905 [11] Li Y, Barra A L, Auffret S, Ebels U and Bailey W E 2015 Phys. Rev. B 92 140413 [12] Neeraj K, Pancaldi M, Scalera V, Perna S, d'Aquino M, Serpico C and Bonetti S 2022 Phys. Rev. B 105 054415 [13] Makhfudz I, Olive E and Nicolis S 2020 Appl. Phys. Lett. 117 132403 [14] Mondal R, Berritta M and Oppeneer P M 2016 Phys. Rev. B 94 144419 [15] Janušonis J, Jansma T, Chang C L, Gatilova L Q A, Lomonosov A M, Shalagatskyi V, Pezeril T, Temnov V V and Tobey R I 2016 Sci. Rep. 6 29143 [16] Olive E, Lansac Y and Wegrowe J E 2012 Appl. Phys. Lett. 100 192407 [17] Olive E, Lansac Y, Meyer M, Hayoun M and Wegrowe J E 2015 J. Appl. Phys. 117 213904 [18] Tonig D, Eriksson O and Pereiro M 2017 Sci. Rep. 7 931 [19] Mondal R, Berritta M and Oppeneer P M 2018 J. Phys. Condens. Matter. 30 265801 [20] Kikuchi T and Tatara G 2015 Phys. Rev. B 92 184410 [21] Fähnle M 2019 J. Magn. Magn. Mater. 469 28 [22] Bastardis R, Vernay F and Kachkachi H 2018 Phys. Rev. B 98 165444 [23] Janušonis J, Chang C L, Jansma T, Gatilova A, Vlasov V S, Lomonosov A M, Temnov V V and Tobey R I 2016 Phys. Rev. B 94 024415 [24] Sun Z Z and Wang X R 2006 Phys. Rev. Lett. 97 077205 [25] Sun Z Z and Wang X R 2006 Phys. Rev. B 73 092416 [26] Vomir M, Andrade L H F, Guidoni L, Beaurepaire E and Bigot J Y 2005 Phys. Rev. Lett. 94 237601 [27] Li Z and Zhang S 2003 Phys. Rev. B 68 024404 [28] Xiao D, Tsoi M and Niu Q 2006 J. Appl. Phys. 99 013903 [29] Wetzels W, Bauer G E W and Jouravlev O N 2006 Phys. Rev. Lett. 96 127203 [30] Stoner E C and Wohlfarth E P 1948 Philos. Trans. R. Soc. London, Ser. A 240 599 [31] Mondal R, Berritta M, Nandy A K and Oppeneer P M 2017 Phys. Rev. B 96 024425 [32] Fähnle M and Illg C 2011 J. Phys.: Condens. Matter. 23 493201 [33] Ciornei M C, Rubi J M and Wegrowe J E 2011 Phys. Rev. B 83 020410 [34] Lomonosov A M, Temnov V V and Wegrowe J E 2021 Phys. Rev. B 104 054425 [35] Wegrowe J E and Ciornei M C 2012 Am. J. Phys. 80 607 [36] Mondal R and Kamra A 2021 Phys. Rev. B 104 214426 [37] Unikandanunni V, Medapalli R, Asa M, Albisetti E, Petti D, Bertacco R, Fullerton E E, and Bonetti S 2022 Phys. Rev. Lett. 129 237201 [38] Bhattacharjee S, Nordström L and Fransson J 2012 Phys. Rev. Lett. 108 057204 [39] Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A and Rasing Th 2009 Nat. Phys. 5 727 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|