Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127505    DOI: 10.1088/1674-1056/acca07
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Periodical polarization reversal modulation in multiferroic MnWO4 under high magnetic fields

Congbin Liu(刘从斌)1, Jinbing Cheng(程晋炳)1, Junbao He(何俊宝)1, Yongsheng Zhu(朱永胜)1, Wan Chang(常婉)1, Xiaoyu Lu(路晓宇)1, Junfeng Wang(王俊峰)2, Meiyan Cui(崔美艳)3, Jinshu Huang(黄金书)1, Dawei Zhou(周大伟)1, Rui Chen(陈瑞)4, Hao Jiang(江浩)1, Chuangchuang Ma(马创创)1, Chao Dong(董超)2,†, and Yongsong Luo(罗永松)1,4,‡
1 Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
2 Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
3 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
4 Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, China
Abstract  We report polarization reversal periodically controlled by the electric field in multiferroic MnWO4 with a pulsed field up to 52 T. The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields (< 14 T) at 4.2 K, whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields (< 45 T). Interestingly, the polarization curve of rising and falling fields for H||u (magnetic easy axis) is irreversible when the magnetic field is close to 52 T. In this case, the rising and falling polarization curves can be individually reversed by the electric field, and thus require five cycles to recover to the initial condition by the order of the applied electric fields (+E, -E, -E, +E, +E). In addition, we find that ferroelectric phase IV can be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.
Keywords:  polarization reversal      periodical modulation      high magnetic field  
Received:  29 December 2022      Revised:  24 March 2023      Accepted manuscript online:  04 April 2023
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.80.Fm (Switching phenomena)  
  77.22.Ej (Polarization and depolarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12074135, 12104388, and 52272219), Nanyang Normal University, the Natural Science Foundation of Henan Province (Grant Nos.222300420255 and 232300421220), and the Key Scientific and Technological Projiect of Technology Depeartment of Henan Province of China (Grant Nos.222102230105 and 212102210448). Congbin Liu acknowledges Wanxin Liu at the WHMFC for help with the data measured in pulsed fields.
Corresponding Authors:  Chao Dong, Yongsong Luo     E-mail:  dongchao@hust.edu.cn;ysluo@xynu.edu.cn

Cite this article: 

Congbin Liu(刘从斌), Jinbing Cheng(程晋炳), Junbao He(何俊宝), Yongsheng Zhu(朱永胜), Wan Chang(常婉), Xiaoyu Lu(路晓宇), Junfeng Wang(王俊峰), Meiyan Cui(崔美艳), Jinshu Huang(黄金书), Dawei Zhou(周大伟), Rui Chen(陈瑞), Hao Jiang(江浩),Chuangchuang Ma(马创创), Chao Dong(董超), and Yongsong Luo(罗永松) Periodical polarization reversal modulation in multiferroic MnWO4 under high magnetic fields 2023 Chin. Phys. B 32 127505

[1] Spaldin N A and Ramesh R 2019 Nat. Mater. 18 203
[2] Fiebig M 2005 J. Phys. D 38 R123
[3] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[4] Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
[5] Liu Y J, Wang J F, He Z Z, Lu C L, Xia Z. C, Ouyang Z W, Liu C B, Chen R, Matsuo A, Kohama Y, Kindo K and Tokunaga M 2018 Phy. Rev. B 97 174429
[6] Ruff A, Krohns S, Lunkenheimer P, Prokofiev A and Loidl A 2014 J. Phys.: Condens. Matter 26 485901
[7] Abe N, Taniguchi K, Ohtani S, Umetsu H and Arima T 2009 Phy. Rev B 80 020402
[8] Ponet L, Artyukhin S, Kain T, Wettstein J, Pimenov A, Shuvaev A, Wang X, Cheong S W, Mostovoy M and Pimenov A 2022 Nature 607 81
[9] Wang C K, Xu C, Chen H Y, Ma X X, Chen Y K, Chen F, Kang B J, Ge J Y, Ren W and Cao S X 2021 J. Alloys Compds. 886 161266
[10] Lautenschläger G, Weitzel H, Vogt T, Hock R, Böhm A, Bonnet M and Fuess H 1993 Phys. Rev. B 48 6087
[11] Arkenbout A H, Palstra T T M, Siegrist T and Kimura T 2006 Phys. Rev. B 74 184431
[12] Mitamura H, Nakamura H, Kimura T, Sakakibara T and Kindo K 2009 J. Phys. Conf. Ser. 150 042126
[13] Mitamura H, Sakakibabr T, Nakamura H, Kimura T and Kindo K 2012 J. Phy. Soc. Jpn. 81 054705
[14] Wang J F, Liu W X, He Z Z, Liu C B, Tokunaga M, Li M, Dong C, Han X T, Herlach F, Lu C. L, Ouyang Z. W, Xia Z C, Kindo K, Li L and Yang M 2021 Phys. Rev. B 104 014415
[15] Taniguchi K, Abe N, Takenobu T, Iwasa Y and Arima T 2006 Phys. Rev. Lett. 97 097203
[16] Taniguchi K, Abe N, Ohtani S and Arima T 2009 Phys. Rev. Lett. 102 147201
[17] Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E and Steigerwald M L 2008 J. Am. Chem. Soc. 130 6955
[18] Liu B Z, Tian X C, Zhou L and Tan X L 2020 Phys. Rev. Mater. 4 104417
[19] Nojiri H, Yoshii S, Yasui M, Okada K, Matsuda M, Jung J S, Kimura T, Santodonato L, Granroth G E, Ross K A, Carlo J P and Gaulin B D 2011 Phys. Rev. Lett. 106 237202
[20] Abe N, Taniguchi K, Ohtani S, Takenobu T, Iwasa Y and Arima T 2007 Phys. Rev. Lett. 99 227206
[21] Kimura K, Nakamura H, Kimura S, Hagiwara M and Kimura T 2009 Phys. Rev. Lett. 103 107201
[22] Poudel N, Liang K. C, Wang Y Q, Sun Y Y, Lorenz B, Ye F, Fernandez-Baca J A and Chu C W 2014 Phys. Rev. B 89 054414
[23] Taniguchi K, Abe N, Ohtani S, Umetsu H and Arima T H 2008 Appl. Phys. Express 1 031301
[24] Yamasaki Y, Sagayama H, Goto T, Matsuura M, Hirota K, Arima T and Tokura Y 2007 Phys. Rev. Lett. 98 147204
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[3] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[4] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[5] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[6] Effects of 3.7 T–24.5 T high magnetic fields on tumor-bearing mice
Xiaofei Tian(田小飞), Ze Wang(王泽), Lei Zhang(张磊), Chuanying Xi(郗传英), Li Pi(皮雳), Ziping Qi(齐紫平), Qingyou Lu(陆轻铀), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(11): 118703.
[7] Optical pumping and population transfer of nuclear-spin states of caesium atoms in high magnetic fields
Luo Jun(罗军), Sun Xian-Ping(孙献平), Zeng Xi-Zhi(曾锡之), and Zhan Ming-Sheng(詹明生). Chin. Phys. B, 2007, 16(4): 998-1007.
No Suggested Reading articles found!