CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Stability analysis of magnetization in a perpendicular magnetic layer driven by spin Hall effect |
Zai-Dong Li(李再东)1,2,†, Xin-Xin Zhao(赵欣欣)1, and Tian-Fu Xu(徐天赋)3 |
1 Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China; 2 Department of Applied Physics and School of Information Engineering, Hebei University of Technology, Tianjin 300401, China; 3 College of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect. In terms of the Landau-Liftshitz-Gilbert equation, we find the low-energy and high-energy equilibrium states, as well as the saddle points. The stability region is defined in the phase diagram spanned by the current density and the spin Hall angle. The spin Hall effect makes the previous saddle point into a stable state above a critical current. However, in the presence of magnetic field, the spin Hall effect leads to the opposite changes in the stable regions of the two low-energy states.
|
Received: 17 October 2022
Revised: 10 December 2022
Accepted manuscript online: 11 January 2023
|
PACS:
|
75.78.-n
|
(Magnetization dynamics)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
Fund: Project supported by the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices of Shanxi University of China (Grant No. KF202203). |
Corresponding Authors:
Zai-Dong Li
E-mail: lizd@email.tjut.edu.cn
|
Cite this article:
Zai-Dong Li(李再东), Xin-Xin Zhao(赵欣欣), and Tian-Fu Xu(徐天赋) Stability analysis of magnetization in a perpendicular magnetic layer driven by spin Hall effect 2023 Chin. Phys. B 32 057503
|
[1] Thomas L, Moriya R, Rettner C and Parkin S S P 2010 Science 330 1810 [2] Slonczewski J 1996 J. Magn. Magn. Mater. 159 L1 [3] Berger L 1996 Phys. Rev. B 54 9353 [4] Li Z D, Cui H, Li Q Y and He P B 2018 Ann. Phys. 388 390 [5] Zhou Z, Zhang X, Guo Y, Zhang Y, Niu X, Ma L and Wang J 2021 Phys. Rev. B 103 245411 [6] Rakhmanov A L, Sboychakov A O, Kugel K I, Rozhkov A V and Nori F 2018 Phys. Rev. B 98 155141 [7] Schüler M, Murakami Y and Werner P 2018 Phys. Rev. B 97 155136 [8] Wang Z Y and Sun Z Z 2018 J. Appl. Phys. 115 063905 [9] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004 [10] Lee K S, Lee S W, Min B C and Lee K J 2013 Appl. Phys. Lett. 102 112410 [11] Kawahara T, Takemura R, Miura K, Hayakawa J, Ikeda S, Lee Y M, Sasaki R, Goto Y, Ito K, Meguro T, Matsukura F, Takahashi H, Matsuoka H and Ohno H 2008 IEEE J. Solid-State Circuits 43 109 [12] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380 [13] Miron I M, Garello K, Gaudin G, Zermatter P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [14] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [15] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602 [16] Hirsch J E 1999 Phys. Rev. Lett. 83 1834 [17] Ohuchi Y, Kozuka Y, Uchida M, Ueno K, Tsukazaki A and Kawasaki M 2015 Phys. Rev. B 91 245115 [18] Laurell P and Fiete G A 2018 Phys. Rev. B 98 094419 [19] Beauvois K, Simonet V, Petit S, Robert J, Bourdarot F, Gospodinov M, Mukhin A A, Ballou R, Skumryev V and Ressouche E 2020 Phys. Rev. Lett. 124 127202 [20] Zhou Y, Guo C, Wan C, Chen X, Zhou X, Zhang R and Song C 2020 Phys. Rev. Appl. 13 064051 [21] Bazaliy Y B, Jones B A and Zhang S C 2004 Phys. Rev. B 69 094421 [22] Grollier J, Cros V, Jaffrés H, Hamzic A, George J M, Faini G, Ben Y J, Le G H and Fert A 2003 Phys. Rev. B 67 174402 [23] Morise H and Nakamura S 2005 Phys. Rev. B 71 014439 [24] Smith N, Katine J A, Childress J R and Carey M J 2005 IEEE Trans. Magn. 41 2935 [25] Slavin A N and Tiberkevich V S 2005 Phys. Rev. B 72 094428 [26] Stiles M D and Miltat J 2006 Spin Transfer Torque and Dynamics (Berlin: Springer-Verlag) p. 225 [27] Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B and Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436 [28] He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G and Zou B S 2010 Eur. Phys. J. B 73 417 [29] Baronio F, Chen S, Grelu P, Wabnitz S and Conforti M 2015 Phys. Rev. Appl. 91 033804 [30] Duan L, Zhao L C, Xu W H, Liu C, Yang Z Y and Yang W L 2017 Phys. Rev. E 95 042212 [31] Li P, Wang L, Kong L Q, Wang X and Xie Z Y 2018 Appl. Math. Lett. 85 110 [32] Wang W, Kevrekidis P G, Carretero-Gonzalez R and Frantzeskakis D J 2016 Phys. Rev. Appl. 93 023630 [33] Risinggȧrd V and Linder 2017 Phys. Rev. B 95 134423 [34] Bi C, Almasi H, Price K, Newhouse-Illige T, Xu M, Allen S R, Fan X and Wang W 2017 Phys. Rev. B 95 104434 [35] Shen L, Xia J, Zhang X, Ezawa M, Tretiakov O A, Liu X, Zhao G and Zhou Y 2020 Phys. Rev. Lett. 124 037202 [36] Zhang J, Zhang Y, Gao Y, Zhao G, Qiu L, Wang K, Dou P, Peng W, Zhuang Y, Wu Y, Yu G, Zhu Z, Zhao Y, Guo Y, Zhu T, Cai J, Shen B and Wang S 2020 Adv. Mater. 32 1907452 [37] Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y and Zhao G P 2022 Rare Metals 41 2200 [38] Li L, Luo J, Xia J, Zhou Y, Liu X and Zhao G 2023 Chin. Phys. B 32 017506 [39] Xia J, Zhang X, Tretiakov O A, Diep H T, Yang J, Zhao G, Ezawa M, Zhou Y and Liu X 2022 Phys. Rev. B 105 214402 [40] Liang X, Zhang X, Xia J, Ezawa M, Zhao Y, Zhao G and Zhou Y 2020 Appl. Phys. Lett. 116 122402 [41] Shen L, Xia J, Zhao G, Zhang X, Ezawa M, Tretiakov O A, Liu X and Zhou Y 2019 Appl. Phys. Lett. 114 042402 [42] Zhao G P, Wang X L, Feng Y P and Huang C W 2007 IEEE Trans. Magn. 43 2908 [43] Zhao G P, Zhao L, Shen L C, Zou J and Qiu L 2019 Chin. Phys. B 28 077505 [44] Zhao G P, Yang C, Xian C W and Feng Y P 2009 Mod. Phys. Lett. B 23 2955 [45] Stoner E C and Wohlfarth E P 2003 Philos. Trans. Roy. Soc. A 27 3475 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|