Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127507    DOI: 10.1088/1674-1056/acca0c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement

Shiyu Xu(徐诗语)1,2, Jiajun Mo(莫家俊)1, Lebin Liu(刘乐彬)1, and Min Liu(刘 敏)1,3,†
1 College of Nuclear Science and Technology, University of South China, Hengyang 430074, China;
2 School of Physics, Huazhong University of Science and Technology, Wuhan 421001, China;
3 Zhuhai Tsinghua University Research Institute Innovation Center, Zhuhai 519000, China
Abstract  MgxNi1-xFe2O4 (x=0, 0.25, 0.5, 0.75, 1) spinel ferrite material was analyzed to determine its magnetic properties and structure. X-ray diffraction (XRD), Mössbauer spectroscopy, and vibrating sample magnetometer (VSM) characterization were performed on the samples prepared using the sol-gel method. The results from XRD confirmed the existence of the single-phase cubic spinel structures Fd$\mathop 3\limits^ -$m, as well as the evolution of the crystalline size (D), the lattice parameter (a) and cell volume in compounds. The Mössbauer spectra showed the distribution of cations and changes in the magnetic properties of the sample. VSM measurement revealed that the samples were room-temperature ferromagnetic. Moreover, the saturation magnetization (Ms) of the samples changed with the Mg2+ ion content x, and a maximum occured at x = 0.5. Doping with Mg2+ ions increased the transfer of Ni2+ ions to tetrahedral sites, thus increasing the magnetic moment difference between tetrahedral (A) and octahedral (B) sites. Specifically, doping NiFe2O4 with Mg2+ ions can enhance its magnetic properties and enhance its saturation magnetization.
Keywords:  spinel structure      magnetic properties      ferrite      Mössbauer spectra  
Received:  26 February 2023      Revised:  31 March 2023      Accepted manuscript online:  04 April 2023
PACS:  75.50.-y (Studies of specific magnetic materials)  
  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11447231), the National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China, the Natural Science Foundation of Hunan Province, China (Grant No.2020JJ4517), the Research Foundation of the Education Bureau of Hunan Province, China (Grant Nos.19A434, 19A433, and 19C1621), and the Opening Project of the Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China (Grant Nos.2019KFY10 and 2019KFY09).
Corresponding Authors:  Min Liu     E-mail:  liuhart@126.com

Cite this article: 

Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏) Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement 2023 Chin. Phys. B 32 127507

[1] Dhaou M H, Hcini S, Mallah A, Bouazizi M L and Jemni A 2017 Appl. Phys. A 123 1
[2] Gul I H, Ahmed W and Maqsood A 2008 J. Magn. Magn. Mater. 320 270
[3] Mathew D S and Juang R S 2007 Chem. Eng. J. 129 51
[4] Mocanu Z V, Airimioaei M, Ciomaga C E, Curecheriu L, Tudorache F, Tascu S, Iordan A R, Palamaru N M and Mitoseriu L 2014 J. Mater. Sci. 49 3276
[5] Zhang Z J, Wang Z L, Chakoumakos B C and Yin J S 1998 J. Am. Chem. Soc. 120 8380
[6] Phong P T, Nam P H, Phuc N X, Huy B T, Lu L T, Manh D H and Lee I J 2019 Metall. Mater. Trans. A 50 1571
[7] Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang X Y, et al. 2014 Chin. Phys. B 23 107503
[8] Maazouzi A E, Masrour R, Jabar A and Hamedoun M 2019 Chin. Phys. B 28 057504
[9] Sorescu M, Diamandescu L, Peelamedu R, Roy R and Yadoji P 2004 J. Magn. Magn. Marer. 279 195
[10] Araújo J C R, Araujo-Barbosa S, Souza A L R, Iglesias C A M, Xavier J, Souza P B, et al. 2021 J. Phys. Chem. Solids 154 110051
[11] Gherca D, Pui A, Cornei N, Cojocariu A, Nica V and Caltun O 2012 J. Magn. Magn. Mater. 324 3906
[12] John Berchmans L, Kalai Selvan R, Selva Kumar P N and Augustin C O 2004 J. Magn. Magn. Mater. 279 103
[13] Anantharamaiah P N, Rao B P, Shashanka H M, Chelvane J A, Khopkar V and Sahoo B 2021 Phys. Chem. Chem. Phys. 23 1694
[14] Lüders U, Bibes M, Bobo J F, Cantoni M, Bertacco R and Fontcuberta J 2005 Phys. Rev. B 71 134419
[15] Amer M A, Meaz T M, Attalah S S and Ghoneim A I 2014 J. Magn. Magn. Mater. 363 60
[16] Mittal V K, Chandramohan P, Bera S, Srinivasan M P, Velmurugan S and Narasimhan S V 2006 Solid State Commun. 137 6
[17] Hassan A, Azhar Khan M, Shahid M, Asghar M, Shakir I, Naseem S, et al. 2015 J. Magn. Magn. Mater. 393 56
[18] Low Z H, Ismail I, Shafie M S E, Ibrahim I R, Ertuǧrul M, Azis R S, et al. 2019 Results Phys. 15 102683
[19] Airimioaei M, Palamaru M N, Iordan A R, Berthet P, Decorse C, Curecheriu L and Mitoseriu L 2014 J. Am. Ceram Soc. 97 519
[20] Msomi J Z, Ndlovu B, Moyo T and Osman N S E 2016 J. Alloys Compd. 683 149
[21] Rosnan R M, Othaman Z, Hussin R, Ati A A, Samavati A, Dabagh S and Zare S 2016 Chin. Phys. B 25 047501
[22] Vitor P A M, Venturini J, da Cunha J B M and Bergmann C P 2021 J. Alloys Compd. 851 156799
[23] Velinov N, Manova E, Tsoncheva T, Estournés C, Paneva D, Tenchev K, et al. 2012 Solid State Sci. 14 1092
[24] Ferreira T A S, Waerenborgh J C, Mendonça M H R M, Nunes M R and Costa F M 2003 Solid State Sci. 5 383
[25] G'omez C A P, Meneses C A B and Jaén J A 2020 J. Magn. Magn. Mater. 505 166710
[26] Nakagomi F, da Silva S W, Garg V K, Oliveira A C, Morais P C and Franco A 2009 J. Solid State Chem. 182 2423
[27] Sarkar K, Mondal R, Dey S and Kumar S 2020 Physica B 583 412015
[28] Pradeep A and Chandrasekaran G 2006 Mater. Lett. 60 371
[29] Lakhani V K, Trivedi U N, Vasoya N H, Raval P Y and Modi K B 2019 Physica B 570 291
[30] Li W and Fa-Shen L 2008 Chin. Phys. B 17 1858
[31] Adhlakha N and Yadav K L 2012 Smart. Mater. Struct. 21 115021
[1] Tuning magneto-dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications
Jian Wu(武剑), Bing Lu(卢冰), Ying Zhang(张颖), Yixin Chen(陈一鑫), Kai Sun(孙凯), Daming Chen(陈大明), Qiang Li(李强), Yingli Liu(刘颖力), and Jie Li(李颉). Chin. Phys. B, 2023, 32(9): 097501.
[2] Hysteresis loss free soft magnetic ferrites based on Larmor precession
Shuang-Jiu Feng(冯双久), Xin-Li Zhao(赵幸丽), Shou-Jin Zhu(朱守金),Qing-Rong Lv(吕庆荣), Xu-Cai Kan(阚绪材), and Xian-Song Liu(刘先松). Chin. Phys. B, 2023, 32(8): 087503.
[3] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[4] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[5] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[6] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[7] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[8] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[9] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[10] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[11] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[12] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[13] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[14] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[15] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
No Suggested Reading articles found!