CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin waves and transverse domain walls driven by spin waves: Role of damping |
Zi-Xiang Zhao(赵梓翔)1, Peng-Bin He(贺鹏斌)1, Meng-Qiu Cai(蔡孟秋)1, Zai-Dong Li(李再东)2,3,4 |
1 School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 School of Science, Tianjin University of Technology, Tianjin 300384, China; 3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China; 4 Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China |
|
|
Abstract Based on the uniform, helical and spiral domain-wall magnetic configurations, the excited spin waves are studied with emphasis on the role of damping. We find that the damping closes the gap of dispersion, and greatly influences the dispersion in the long-wave region for the spin waves of spiral wall and helical structure. For the uniform configuration, the Dzyaloshinskii-Moriya interaction determines the modification of dispersion by the damping. Furthermore, we investigate the interaction between spin waves and a moving spiral domain wall. In the presence of damping, the amplitude of spin wave can increase after running across the wall for small wave numbers. Driving by the spin waves, the wall propagates towards the spin-wave source with an increasing velocity. Unlike the case without damping, the relation between the wall velocity and the spin-wave frequency depends on the position of wall.
|
Received: 20 April 2020
Revised: 20 April 2020
Accepted manuscript online:
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
75.10.Hk
|
(Classical spin models)
|
|
75.78.-n
|
(Magnetization dynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774001 and 51972103), the Natural Science Foundation of Hebei Province of China (Grant No. F2019202141), and the Fund of the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No. KF201906). |
Corresponding Authors:
Peng-Bin He
E-mail: hepengbin@hnu.edu.cn
|
Cite this article:
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东) Spin waves and transverse domain walls driven by spin waves: Role of damping 2020 Chin. Phys. B 29 077502
|
[1] |
Winter J M 1961 Phys. Rev. 124 452
|
[2] |
Janak J F 1964 Phys. Rev. 134 A411
|
[3] |
Thiele A A 1973 Phys. Rev. B 7 391
|
[4] |
Kishine J and Ovchinnikov A S 2011 Phys. Lett. A 375 1824
|
[5] |
Borys P, Garcia-Sanchez F, Kim J V and Stamps R L 2016 Adv. Electron. Mater. 2 1500202
|
[6] |
Bouzidi D and Suhl H 1990 Phys. Rev. Lett. 65 2587
|
[7] |
Wieser R, Vedmedenko E Y and Wiesendanger R 2010 Phys. Rev. B 81 024405
|
[8] |
Wang X S, Yan P, Shen Y H, Bauer G E W and Wang X R 2012 Phys. Rev. Lett. 109 167209
|
[9] |
Woo S, Delaney T and Beach G S D 2017 Nat. Phys. 13 448
|
[10] |
Whitehead N J, Horsley S A R, Philbin T G, Kuchko A N and Kruglyak V V 2017 Phys. Rev. B 96 064415
|
[11] |
Macke S and Goll D 2010 J. Phys.: Conf. Ser. 200 042015
|
[12] |
Yu W, Lan J, Wu R and Xiao J 2016 Phys. Rev. B 94 140410
|
[13] |
Hämäláinen S J, Madami M, Qin H J, Gubbiotti G and van Dijken S 2018 Nat. Commun. 9 4853
|
[14] |
Chang L J, Liu Y F, Kao M Y, Tsai L Z, Liang J Z and Lee S F 2018 Sci. Rep. 8 3910
|
[15] |
Yanes R, Ontoso N, Torres L and Lopez-Diaz L 2019 J. Phys. D: Appl. Phys. 52 175002
|
[16] |
Hertel R, Wulfhekel W and Kirschner J 2004 Phys. Rev. Lett. 93 257202
|
[17] |
Bayer C, Schultheiss H, Hillebrands B and Stamps R L 2005 IEEE Trans. Magn. 41 3094
|
[18] |
Buijnsters F J, Ferreiros Y, Fasolino A and Katsnelson M I 2016 Phys. Rev. Lett. 116 147204
|
[19] |
Garcia-Sanchez F, Borys P, Soucaille R, Adam J P, Stamps R L and Kim J V 2015 Phys. Rev. Lett. 114 247206
|
[20] |
Wagner K, Kákay A, Schultheiss K, Henschke A, Sebastian T and Schultheiss H 2016 Nat. Nanotech. 11 432
|
[21] |
Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207
|
[22] |
Kim J S, Stärk M, Kläui M, Yoon J, You C Y, Lopez-Diaz L and Martinez E 2012 Phys. Rev. B 85 174428
|
[23] |
Wang X G, Guo G H, Nie Y Z, Zhang G F and Li Z X 2012 Phys. Rev. B 86 054445
|
[24] |
Zhang S F, Mu C P, Zhu Q Y, Zheng Q, Liu X Y, Wang J B and Liu Q F 2014 J. Appl. Phys. 115 013908
|
[25] |
Wang W W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Cortés-Ortuno D, Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203
|
[26] |
Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
|
[27] |
Li Z D, Li Q Y, Xu T F and He P B 2016 Phys. Rev. E 94 042220
|
[28] |
Zheng Z X, Li Q Y, Li Z D, Wang S X, Xu L P and Wen T D 2009 Ann. Phys. 324 1612
|
[29] |
Han D S, Kim S K, Lee J Y, Hermsdoerfer S J, Schultheiss H, Leven B and Hillebrands B 2009 Appl. Phys. Lett. 94 112502
|
[30] |
Wang X G, Guo G H, Zhang G F, Nie Y Z and Xia Q L 2013 J. Appl. Phys. 113 213904
|
[31] |
Janutka A 2013 IEEE Magn. Lett. 4 4000104
|
[32] |
H Hata H, Taniguchi T, Lee H W, Moriyama T and Ono T 2014 Appl. Phys. Expr. 7 033001
|
[33] |
Moon K W, Chun B S, Kim W and Hwang C 2013 J. Appl. Phys. 114 123908
|
[34] |
Wang X G, Guo G H, Zhang G F, Nie Y Z and Xia Q L 2013 Appl. Phys. Lett. 102 132401
|
[35] |
Risinggard V, Tveten E G, Brataas A and Linder J 2017 Phys. Rev. B 96 174441
|
[36] |
Tretiakov O A and Abanov Ar 2010 Phys. Rev. Lett. 105 157201
|
[37] |
Zhuo F J and Sun Z Z 2016 Sci. Rep. 6 25122
|
[38] |
Blundell S 2001 Magnetism in Condensed Matter (London: Oxford Press) p. 86
|
[39] |
Aharoni A 1998 J. Appl. Phys. 83 3432
|
[40] |
Zakeri Kh, Zhang Y, Prokop J, Chuang T H, Sakr N, Tang W X and Kirschner J 2010 Phys. Rev. Lett. 104 137203
|
[41] |
Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D and Stiles M D 2013 Phys. Rev. B 88 184404
|
[42] |
Cortés-Ortuño D and Landeros P 2013 J. Phys.: Condens. Matter 25 156001
|
[43] |
Garcia-Sanchez F, Borys P, Vansteenkiste A, Kim J V and Stamps R L 2014 Phys. Rev. B 89 224408
|
[44] |
Lekner J 2007 Am. J. Phys. 75 1151
|
[45] |
Malozemoff A P and Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (New York: Academic Press) pp. 79-80
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|