Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118201    DOI: 10.1088/1674-1056/acef06
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Fabrication and research of bi-functional CuNi2S4 nanosheets decorated TiO2/CuNi2S4 heterojunction photoanode for photoelectrochemical water splitting

Wei Jin(金伟), Liyuan Zhang(张立媛), Wenjing Zhang(张文静), Qian Sun(孙倩), Dekai Zhang(张德恺), Hui Miao(苗慧), and Xiaoyun Hu(胡晓云)
School of Physics, Northwest University, Xi'an 710127, China
Abstract  As a traditional n-type semiconductor, TiO2 has good UV absorption ability and stable physical and chemical properties. However, its wide band gap and low oxygen evolution reaction (OER) activity limit its application in the field of photoelectrochemical (PEC) water splitting. In this work, a type-II TiO2/CuNi2S4 heterojunction photoanode is successfully constructed, which expanded the light absorption range to visible and enhanced the OER activity. Firstly, TiO2 nanotubes (NTs) thin films are prepared on Ti substrates by two-step anodization, and then the bi-functional electrocatalytic material CuNi2S4 is grown on TiO2 NTs in the shape of nanosheets (NSs) in situ by solvothermal method. As a bi-functional electrocatalytic material, CuNi2S4 has good visible light absorption property as well as OER catalytic activity. Compared with TiO2, the IPCE value of TiO2/CuNi2S4 is 2.59% at 635 nm, and that of TiO2 is a mere 0.002%. The separation efficiency and injection efficiency increase from 2.49% and 31.52% to 3.61% and 87.77%, respectively. At 1.23 V vs. RHE, the maximum photocurrent density is 0.26 mA/cm2, which is 2.6 times than that of TiO2 (0.11 mA/cm2), and can be maintained at 0.25 mA/cm2 for at least 2 h under light illumination. Moreover, a hydrogen production rate of 4.21 μ mol· cm-2·h-1 is achieved within 2 h. This work provides a new idea for the application of TiO2 in the field of PEC water splitting and the construction of efficient and stable photoelectronic devices.
Keywords:  TiO2      CuNi2S4      high stability      photoelectrochemical properties  
Received:  16 May 2023      Revised:  28 July 2023      Accepted manuscript online:  11 August 2023
PACS:  82.47.Jk (Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  85.35.Kt (Nanotube devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974276 and 11804274), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2023-JC-YB-139), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, and the Chinese Academy of Sciences (Grant No. SKLST202211).
Corresponding Authors:  Hui Miao, Xiaoyun Hu     E-mail:  huim@nwu.edu.cn;hxy3275@nwu.edu.cn

Cite this article: 

Wei Jin(金伟), Liyuan Zhang(张立媛), Wenjing Zhang(张文静), Qian Sun(孙倩), Dekai Zhang(张德恺), Hui Miao(苗慧), and Xiaoyun Hu(胡晓云) Fabrication and research of bi-functional CuNi2S4 nanosheets decorated TiO2/CuNi2S4 heterojunction photoanode for photoelectrochemical water splitting 2023 Chin. Phys. B 32 118201

[1] Li S, Wang C, Cai M, Yang F, Liu Y, Chen J, Zhang P, Li X and Chen X 2022 Chem. Eng. J. 428 131158
[2] Yang W and Moon J 2019 ChemSusChem 12 1889
[3] Vickers N J 2017 Curr. Biol. 27 R713
[4] Mufutau O B 2021 Energy 228 120519
[5] Leonard M D, Michaelides E E and Michaelides D N 2020 Renew. Energ. 145 951
[6] Lebrouhi B E, Djoupo J J, Lamrani B, Benabdelaziz K and Kousksou T 2022 Int. J. Hydrogen Energy 47 7016
[7] Liu L, Wang Y, Wang Z, Li S, Li J, He G, Li Y, Liu Y, Piao S, Gao Z, Chang R, Tang W, Jiang K, Wang S, Wang J, Zhao L and Chao Q 2022 Resour. Conserv. Recycl. 180 106155
[8] Li Z, Luo Z, Wang Y, Fan G and Zhang J 2022 Renew. Energ. 184 564
[9] Wang G, Chao Y, Jiang T and Chen Z 2022 Sci. Total Environ. 814 151927
[10] Darmawi, Sipahutar R, Bernas S M and Imanuddin M S 2013 Renew. Sust. Energ. Rev. 17 213
[11] Dawood F, Anda M and Shafiullah G M 2020 Int. J. Hydrogen Energy 45 3847
[12] Sazali N 2020 Int. J. Hydrogen Energy 45 18753
[13] Tarhan C and Çil M A 2021 J. Energy Storage 40 102676
[14] Niu F, Wang D, Li F, Liu Y, Shen S and Meyer T J 2019 Adv. Energy Mater. 10 1900399
[15] Arifin K, Yunus R M, Minggu L J and Kassim M B 2021 Int. J. Hydrogen Energy 46 4998
[16] Reddy C V, Reddy K R, Shetti N P, Shim J, Aminabhavi T M and Dionysiou D D 2020 Int. J. Hydrogen Energy 45 18331
[17] Guo X, Li M, Qiu L, Tian F, He L, Geng S, Liu Y, Song Y, Yang W and Yu Y 2023 Chem. Eng. J. 453 139796
[18] Wang Y, Qiu L, Bao S, Tian F, Sheng J, Yang W and Yu Y 2023 Sep. Purif. Technol. 316 123779
[19] Zhang X, Gao M, Qiu L, Sheng J, Yang W and Yu Y 2023 J. Energy Chem. 79 64
[20] Zhang X, Gao M, Qiu L, Yang W and Yu Y 2023 Chem. Eng. J. 465 142747
[21] Zhang X, Tian F, Lan X, Liu Y, Yang W, Zhang J and Yu Y 2022 Chem. Eng. J. 429 132588
[22] Gao J, Xue J, Jia S, Shen Q, Zhang X, Jia H, Liu X, Li Q and Wu Y 2021 ACS Appl. Mater. Interfaces 13 18758
[23] Zhang W, Xue J, Shen Q, Jia S, Gao J, Liu X and Jia H 2021 J. Alloys Compd. 870 159400
[24] Lin S W, Tong M H, Chen Y X, Chen R, Zhao H P, Jiang X, Yang K and Lu C Z 2023 ACS Appl. Energy Mater. 6 1093
[25] Hou J, Kong L, Xie Y, Ma J, Liu Y, Chen M and Wang Q 2022 Ceram. Int. 48 3941
[26] Zhang S, Liu Z, Chen D, Guo Z and Ruan M 2020 Chem. Eng. J. 395 125101
[27] Jia Y, Liu P, Wang Q, Wu Y, Cao D and Qiao Q A 2021 J. Colloid Inter. Sci. 585 459
[28] Gao B, Sun M, Ding W, Ding Z and Liu W 2021 Appl. Catal. B 281 119492
[29] Song X, Zhou H and Jiang C 2021 Chin. Phys. B 30 058505
[30] Cheng Q, Yuan Y J, Tang R, Liu Q Y, Bao L, Wang P, Zhong J, Zhao Z, Yu Z T and Zou Z 2022 ACS Catal. 12 2118
[31] Song Y, Waterhouse G I N, Han F, Li Y and Ai S 2021 ChemCatChem 13 2931
[32] Zimbone M, Cantarella M, Impellizzeri G, Battiato S and Calcagno L 2021 Molecules 26 1420
[33] Meng M, Li C, Li J, Wu J, Feng Y, Sun L, Yuan H and Liu K 2023 J. Phys. D:Appl. Phys. 56 055502
[34] Tong M H, Wang T M, Lin S W, Chen R, Jiang X, Chen Y X and Lu C Z 2023 Appl. Surf. Sci. 623 156980
[35] Xiao Z, Cheng S, Liao W, Fan D, Lu H and Liu Y 2022 Int. J. Electrochem. Sci. 17 220817
[36] Frank A J, Kopidakis N and Lagemaat J V D 2004 Coord. Chem. Rev. 248 1165
[37] Mor G K, Shankar K, Paulose M, Varghese O K and Grimes C A 2005 Nano Lett. 6 215
[38] Hejazi S, Mohajernia S, Osuagwu B, Zoppellaro G, Andryskova P, Tomanec O, Kment S, Zboril R and Schmuki P 2020 Adv. Mater. 32 1908505
[39] Park H, Park Y, Kim W and Choi W 2013 J. Photoch. Photobi. C 15 1
[40] Jia G, Wang Y, Cui X, Zhang H, Zhao J, Li L H, Gu L, Zhang Q, Zheng L, Wu J, Wu Q, Singh D J, Li W, Zhang L and Zheng W 2022 Matter 5 206
[41] Xu A, Tu W, Shen S, Lin Z, Gao N and Zhong W 2020 Appl. Surf. Sci. 528 146949
[42] Singh J, Juneja S, Soni R K and Bhattacharya J 2021 J. Colloid Interface Sci. 590 60
[43] Tang T, Yin Z, Chen J, Zhang S, Sheng W, Wei W, Xiao Y, Shi Q and Cao S 2021 Chem. Eng. J. 417 128058
[44] Li Y, Wu Q, Chen Y, Zhang R, Li C, Zhang K, Li M, Lin Y, Wang D, Zou X and Xie T 2021 Appl. Catal. B 290 120058
[45] Hou L, Bu Q, Li S, Wang D and Xie T 2016 RSC Adv. 6 99081
[46] Ahmad A, Tezcan F, Yerlikaya G, Zia-ur-Rehman, Paksoy H and Kardaş G 2021 J. Alloys Compd. 868 159133
[47] Kalanur S S, Lee S H, Hwang Y J and Joo O S 2013 J. Photoch. Photobio. A 259 1
[48] Ito S, Tanaka S, Manabe K and Nishino H 2014 J. Phys. Chem. C 118 16995
[49] Wang Y, Tang R, Huang L, Qian C, Lian W, Zhu C and Chen T 2022 ACS Appl. Mater. Interfaces 14 33181
[50] Lu X, Liu L, Xie X, Cui Y, Oguzie E E and Wang F 2020 J. Mater. Sci. Technol. 37 55
[51] Guo H, Jiang N, Wang H, Shang K, Lu N, Li J and Wu Y 2019 Appl. Catal. B 248 552
[52] Zhao D, Sheng G, Chen C and Wang X 2012 Appl. Catal. B 111-112 303
[53] Chen L, Zhou Y, Dai H, Yu T, Liu J and Zou Z 2015 Nano Energy 11 697
[54] Zhu J, Cheng Y, Zhang W, Zhao J, Sun Q, Hu X and Miao H 2022 Appl. Surf. Sci. 601 154188
[55] Kottayi R, Ilangovan V and Sittaramane R 2022 Optik 255 168692
[56] Park J, Lee T H, Kim C, Lee S A, Choi M J, Kim H, Yang J W, Lim J and Jang H W 2021 Appl. Catal. B 295 120276
[57] Li H, Song W, Cui X, Li Y, Hou B, Cheng L and Zhang P 2021 Nano Energy 16 10
[58] Nouseen S, Singh P, Lavate S, Chattopadhyay J, Kuchkaev A M, Yakhvarov D G and Srivastava R 2022 Catal. Today 397-399 618
[59] Mao M, Xu J, Yu X and Liu Y 2020 Dalton Trans. 49 6457
[60] Adarakatti P S, Mahanthappa M, Hughes J P, Rowley-Neale S J, Smith G C, Ashoka S and Banks C E 2019 Int. J. Hydrogen Energy 44 16069
[61] Zhu X and Liu S 2022 J. Energy Storage 51 104582
[62] Yin Y, Li J, Wang Y, Wan J, Du X, Hu X, Liu E and Fan J 2017 Mater. Res. Bull. 88 33
[63] Deng X, Zhang H, Guo R, Cui Y, Ma Q, Zhang X, Cheng X, Li B, Xie M and Cheng Q 2018 Sep. Purif. Technol. 193 264
[64] Jiang X, Sun M, Chen Z, Jing J and Feng C 2020 J. Alloys Compd. 816 152533
[65] Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K and Li L 2014 ACS Appl. Mater. Interfaces 6 17200
[66] Hu J, Cao Y, Xie J and Jia D 2017 Ceram. Int. 43 11109
[67] Chen C C, Shaya J, Polychronopoulou K, Golovko V B, Tesana S, Wang S Y and Lu C S 2021 Nanomaterials 11 1325
[68] Dai X C, Huang M H, Li Y B, Li T, Zhang B B, He Y, Xiao G and Xiao F X 2019 J. Mater. Chem. A 7 2741
[1] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[2] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[3] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[4] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[5] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[6] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[7] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[8] Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application
Shi Su(苏适), Jinwen Ma(马晋文), Wanlong Zuo(左万龙), Jun Wang(汪俊), Li Liu(刘莉), Shuang Feng(冯爽), Tie Liu(刘铁), Wuyou Fu(付乌有), Haibin Yang(杨海滨). Chin. Phys. B, 2018, 27(8): 088802.
[9] Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope
Chaoyu Guo(郭钞宇), Xiangzhi Meng(孟祥志), Qin Wang(王钦), Ying Jiang(江颖). Chin. Phys. B, 2018, 27(7): 077301.
[10] Enhanced transient photovoltaic characteristics of core-shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film
Kui-Ying Li(李葵英), Lun Ren(任伦), Tong-De Shen(沈同德). Chin. Phys. B, 2018, 27(6): 067305.
[11] Electronic structures and optical properties of HfO2-TiO2 alloys studied by first-principles GGA+ U approach
Jin-Ping Li(李金平), Song-He Meng(孟松鹤), Cheng Yang(杨程), Han-Tao Lu(陆汉涛), Takami Tohyama(遠山貴巳). Chin. Phys. B, 2018, 27(2): 027101.
[12] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
[13] 420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells
Long Li(李龙), Cheng-Wu Shi(史成武), Xin-Lian Deng(邓新莲), Yan-Qing Wang(王艳青), Guan-Nan Xiao(肖冠南), Ling-Ling Ni(倪玲玲). Chin. Phys. B, 2018, 27(1): 018804.
[14] Importance of ligands on TiO2 nanocrystals for perovskite solar cells
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(1): 018401.
[15] Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study
Debashish Dash, Chandan K Pandey, Saurabh Chaudhury, Susanta K Tripathy. Chin. Phys. B, 2018, 27(1): 017102.
No Suggested Reading articles found!