Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118104    DOI: 10.1088/1674-1056/ad04cb
Special Issue: Featured Column — COMPUTATIONAL PROGRAMS FOR PHYSICS
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

MatChat: A large language model and application service platform for materials science

Zi-Yi Chen(陈子逸)1,2,†, Fan-Kai Xie(谢帆恺)3,4,†, Meng Wan(万萌)1,†, Yang Yuan(袁扬)1,2, Miao Liu(刘淼)3,5,6,‡, Zong-Guo Wang(王宗国)1,2,§, Sheng Meng(孟胜)3,5, and Yan-Gang Wang(王彦棡)1,2
1 Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China;
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence (GAI), including automated text generation and question-answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data. This specialized AI model, named MatChat, focuses on predicting inorganic material synthesis pathways. MatChat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although MatChat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. MatChat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.
Keywords:  MatChat      materials science      generative artificial intelligence  
Received:  11 October 2023      Revised:  18 October 2023      Accepted manuscript online:  19 October 2023
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  01.50.hv (Computer software and software reviews)  
  81.16.Be (Chemical synthesis methods)  
Fund: This work was supported by the Informatization Plan of the Chinese Academy of Sciences (Grant No. CASWX2023SF-0101), the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-7025), the Youth Innovation Promotion Association CAS (Grant No. 2021167), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33020000).
Corresponding Authors:  Miao Liu, Zong-Guo Wang     E-mail:  mliu@iphy.ac.cn;wangzg@cnic.cn

Cite this article: 

Zi-Yi Chen(陈子逸), Fan-Kai Xie(谢帆恺), Meng Wan(万萌), Yang Yuan(袁扬), Miao Liu(刘淼), Zong-Guo Wang(王宗国), Sheng Meng(孟胜), and Yan-Gang Wang(王彦棡) MatChat: A large language model and application service platform for materials science 2023 Chin. Phys. B 32 118104

[1] OpenAI 2023 arXiv:2303.08774[cs.CL]
[2] Du Z X, Qian Y J, Liu X, Ding M, Qiu J Z, Yang Z L and Tang J 2022 Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers) (Dublin, Association for Computational Linguistics) pp. 320-335
[3] Zeng A H, Liu X, Du Z X, Wang Z H, Lai H Y, Ding M, Yang Z Y, Xu Y F, Zheng W D, Xia X, Weng L T, Ma Z X, Xue Y F, Zhai J D, Chen W G, Liu Z Y, Zhang P, Dong Y X and Tang J 2022 arXiv:2210.02414[cs.CL]
[4] Sun Y, Wang S H, Li Y K, Feng S K, Chen X Y, Zhang H, Tian X, Zhu D X, Tian H and Wu H 2019 arXiv:1904.09223[cs.CL]
[5] Sun Y, Wang S H, Li Y K, Feng S K, Tian H, Wu H and Wang H F 2020 The Thirty-Fourth AAAI Conference on Artificial Intelligence (California:AAAI Press, Palo Alto) pp. 8968-8975
[6] Sun Y, Wang S H, Feng S K, Ding S Y, Pang C, Shang J Y, Liu J Y, Chen X Y, Zhang H, Zhao Y B, Lu Y X, Liu W X, Wu Z H, Gong W B, Liang J Z, Shang Z Z, Sun P, Liu W, Ouyang X, Yu D H, Tian H, etc. 2021 arXiv:2107.02137[cs.CL]
[7] Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M A, Lacroix T, Roziére B, Goyal N, Hambro E, Azhar F, Rodriguez A, Joulin A, Grave E and Lample G 2023 arXiv:2302.13971[cs.CL]
[8] Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S, Bikel D, Blecher L, Ferrer C C, Chen M Y, Cucurull G, Esiobu D, Fernandes J, Fu J, Fu W Y and Fuller B 2023 arXiv:2307.09288[cs.CL]
[9] Yang P, Wang J J, Gan R Y, Zhu X Y, Zhang L, Wu Z W, Gao X Y, Zhang J X and Sakai T 2022 arXiv:2210.08590[cs.CL]
[10] Zhang H B, Chen J Y, Jiang F, Yu F, Chen Z H, Li J Q, Chen G M, Wu X B, Zhang Z Y, Xiao Q Y, Wan X, Wang B Y and Li H Z 2023 arXiv:2305.15075[cs.CL]
[11] Xiong H L, Wang S, Zhu Y T, Zhao Z H, Liu Y X, Wang Q and Shen D G 2023 arXiv:2304.01097[cs.CL]
[12] Zhang X Y, Yang Q and Xu D L 2023 arXiv:2305.12002[cs.CL]
[13] Dan Y H, Lei Z K, Gu Y Y, Li Y, Yin J H, Lin J J, Ye L H, Tie Z Y, Zhou Y G, Wang Y L, Zhou A M, Zhou Z, Chen Q, Zhou J, He L and Qiu X P 2023 arXiv:2308.02773[cs.CL]
[14] Wang J J, Zhang Y X, Zhang L, Yang P, Gao X Y, Wu Z W, Dong X Q, and He J Q, Zhuo J H, Yang Q, Huang Y F, Li X Y, Wu, Y H, Lu J Y, Zhu X Y, Chen W F, Han T, Pan K H, Wang R, Wang H, et al. 2022 CoRR abs/2209.02970
[15] Xie F K, Lu T L, Yu Z, Wang Y X, Wang Z G, Meng S and Liu M 2023 Chin. Phys. Lett. 40 057401
[16] Xie F K, Lu T L, Yu Z, Wang Y X, Wang Z G, Meng S and Liu M 2023 Chin. Phys. Lett. 40 117101
[17] Jiang Y T, Yu Z, Wang Y X, Lu T L, Meng S, Jiang K, and Liu M. 2022 Chin. Phys. Lett. 39 047402
[18] Cheng Z and Yu Z H 2021 Chin. Phys. Lett. 38 070302
[19] Bai S C, Tang Y C and Ran S J 2022 Chin. Phys. Lett. 39 100701
[20] Ren H B, Wang L and Dai X 2021 Chin. Phys. Lett. 38 050701
[21] Jia H X, Horton M, Wang Y N, Zhang S J, Persson K A, Meng S and Liu M 2022 Adv. Sci. 9 2202756
[22] Liu M and Meng S 2023 Scientia Sinica Chimica 53 19
[23] Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 JOM 65 1501
[24] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[25] Liang Y Z, Chen M W, Wang Y N, Jia H X, Lu T L, Xie F K, Cai G H, Wang Z G, Meng S and Liu M 2023 Sci. China. Mater. 66 343
[26] Liu Z W, Guo J L, Chen Z Y, Wang Z G, Sun Z N, Li X W and Wang Y G 2022 Comp. Mater. Sci. 214 111699
[27] Guo J L, Chen Z Y, Liu Z W, Li X W, Xie Z Y, Wang Z G and Wang Y G 2022 Sci. Rep. 12 15326
[28] Gupta T, Zaki M, Krishnan N A and Mausam 2022 npj Comput. Mater. 8 102
[29] Devlin J, Chang M W, Lee K and Toutanova K 2019 Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1 (Long and Short Papers) (Minneapolis:Association for Computational Linguistics) pp. 4171-4186
[30] Wang Z R, Kononova O, Cruse K, He T J, Huo H Y, Fei Y X, Zeng Y, Sun Y Z, Cai Z J, Sun W H and Ceder G 2022 Sci. Data 9 231
[31] Hu Edward J., Shen Y L, Phillip Wallis, Allen-Zhu Z Y, Li Y Z, Wang S A, Wang L and Chen W Z 2021 arXiv:2106.09685[cs.CL]
[32] Lucacel R C, Ponta O, Licarete, E, Radu T and Simon V 2016 J. Non-Crystalline Solids 439 67
[33] Annapurna K, Dwivedi RN, Kundu P and Buddhudu S 2003 Mater. Lett. 57 2095
[1] P-type cold-source field-effect transistors with TcX2 and ReX2 (X=S, Se) cold source electrodes: A computational study
Qianwen Wang(汪倩文), Jixuan Wu(武继璇), Xuepeng Zhan(詹学鹏),Pengpeng Sang(桑鹏鹏), and Jiezhi Chen(陈杰智). Chin. Phys. B, 2023, 32(12): 127203.
[2] Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
Shenshen Yan(闫申申), Yan Liu(刘岩), Zi Wang(王子), Xiaohua Lan(兰晓华), Yi Wang(汪毅), and Jie Ren(任捷). Chin. Phys. B, 2023, 32(5): 057802.
[3] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽) and Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[4] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[7] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[8] Negative compressibility property in hinging open-cell Kelvin structure
Meng Ma(马梦), Xiao-Qin Zhou(周晓勤), Hao Liu(刘浩), and Hao-Cheng Wang(王浩成). Chin. Phys. B, 2021, 30(5): 056201.
[9] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[10] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[11] Theoretical studies on alloying of germanene supported on Al (111) substrate
Qian-Xing Chen(陈前行), Hao Yang(杨浩), and Gang Chen(陈刚)†. Chin. Phys. B, 2020, 29(10): 108103.
[12] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[13] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[14] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[15] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
No Suggested Reading articles found!