Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088802    DOI: 10.1088/1674-1056/27/8/088802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application

Shi Su(苏适)1, Jinwen Ma(马晋文)2, Wanlong Zuo(左万龙)3, Jun Wang(汪俊)1, Li Liu(刘莉)1, Shuang Feng(冯爽)1, Tie Liu(刘铁)1, Wuyou Fu(付乌有)1, Haibin Yang(杨海滨)1
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 College of New Energy, Bohai University, Jinzhou 121013, China;
3 Anhui Provincial Key Laboratory of Optoelectric Materials Science and Technology, Anhui Normal University, Wuhu 241000, China
Abstract  

In this study, TiO2 nanoforest films consisting of nanotubes have been synthesized by a simple hydrothermal method and a subsequent sintering technique. The hydrothermal reaction time is important for the controlling of the nanotube diameter and the specific surface area of holistic TiO2 films. When the hydrothermal process reaction time is up to 8 hours, the diameter of the nanotube is about 10 nm, and the specific surface area of TiO2 nanoforest films reaches the maximum. CdS nanoparticles are synthesized on TiO2 nanoforest films by the successive ionic layer adsorption and reaction (SILAR) technique. The transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX) mapping results verify that TiO2/CdS heterostructures are realized. A significant red-shift of the absorption edge from 380 nm to 540 nm can be observed after the pure TiO2 film is sensitized by CdS nanoparticles. Under irradiation of light, the current density of the optimal TiO2/CdS photoanode is 2.30 mA·cm-2 at 0 V relative to the saturated calomel electrode (SCE), which is 6 times stronger than that of the pure TiO2 photoanode. This study suggests that the TiO2 nanoforest consisting of interlinked pony-size nanotubes is a promising nanostructure for photoelectrochemical.

Keywords:  TiO2      nanoforest      CdS      photoelectrochemical  
Received:  22 March 2018      Revised:  22 May 2018      Accepted manuscript online: 
PACS:  88.30.mj (Composite materials)  
  88.40.ff (Performance testing)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51272086 and 11704004), the Technology Development Program of Jilin Province, China (Grant No. 20130206078GX), and the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA20).

Corresponding Authors:  Haibin Yang     E-mail:  yanghb@jlu.edu.cn

Cite this article: 

Shi Su(苏适), Jinwen Ma(马晋文), Wanlong Zuo(左万龙), Jun Wang(汪俊), Li Liu(刘莉), Shuang Feng(冯爽), Tie Liu(刘铁), Wuyou Fu(付乌有), Haibin Yang(杨海滨) Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application 2018 Chin. Phys. B 27 088802

[1] Grätzel M 2001 Nature 414 338
[2] O'Regan B and Grätzel M 1991 Nature 353 737
[3] Li Z, Luo W, Zhang M, Feng J and Zou Z 2013 Energy Environ. Sci. 6 347
[4] Xu J, Hu Z, Zhang J, Xiong W, Sun L, Wan L, Zhou R, Jiang Y and Lee C 2006 Adv. Funct. Mater. 16 1067
[5] Choi H, Sofranko A C and Dionysiou D D 2006 Adv. Funct. Mater. 16 1067
[6] Shahzad N, Risplendi F, Pugliese D, Bianco S, Sacco A, Lamberti A, Gazia R, Tresso E and Cicero G 2018 Chem. Commun. 54 58
[7] Fu W, Li G, Wang Y, Zeng S, Yan Z, Wang J, Xin S, Zhang L, Wu S and Zhang Z 2018 Chem. Commun. 54 58
[8] Li S, Qiu J, Ling M, Peng F, Wood B and Zhang S 2013 ACS Appl. Mater. Interfaces 5 11129
[9] Cao F, Xiong J, Wu F, Liu Q, Shi Z, Yu Y, Wang X and Li L 2016 ACS Appl. Mater. Interfaces 8 12239
[10] Shao F, Sun J, Gao L, Yang S and Luo J 2008 J. Am. Chem. Soc. 130 1124
[11] Sun W, Yu Y, Pan H, Gao X, Chen Q and Peng L 2008 J. Am. Chem. Soc. 130 1124
[12] Tian J, Zhang Q, Zhang L, Gao R, Shen L, Zhang S, Qu X and Cao G 2013 Nanoscale 5 936
[13] Robel I, Kuno M and Kamat P 2007 J. Am. Chem. Soc. 129 4136
[14] Etgar L, Yanover D, Čapek R K, Vaxenburg R, Xue Z, Liu B, Nazeeruddin M K, Lifshitz E and Grätzel M 2013 Adv. Funct. Mater. 23 2736
[15] Li Z, Yu L, Liu Y and Sun S 2014 J. Mater. Sci. 49 6392
[16] Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y and Zhu L 2012 Chem. Eng. J. 180 151
[17] Pan R, Wu Y and Liew K 2010 Appl. Surf. Sci. 256 6564
[18] Luo S, Shen H, Hu W, Yao Z, Li J, Oron D, Wang N and Lin H 2016 RSC Adv. 6 21156
[19] Zolfaghari-Isavandi Z and Shariatinia Z 2018 J. Alloys Compd. 737 99
[20] Nguyen V M, Cai Q Y and Grimes C A 2016 J. Colloid Interf. Sci. 483 287
[21] Su W, Chen J, Wu L, Wang X, Wang X and Fu X 2008 Appl. Catal. B-Environ. 77 264
[22] Seol M, Jang J, Cho S, Lee J S and Yong K 2013 Chem. Mater. 25 184
[23] Nicolau Y F 1985 Appl. Surf. Sci. 22/23 1061
[24] Banerjee S, Mohapatra S K, Das P P and Misra M 2008 Chem. Mater. 20 6784
[25] Zhu W, Liu X, Liu H, Tong D, Yang J and Peng J 2010 J. Am. Chem. Soc. 132 12619
[26] Kim H, Noh K, Choi C, Khamwannah J, Villwock D and Jin S 2011 Langmuir 27 10191
[27] Yao H, Ma J, Mu Y, Chen Y, Su S, Lv P, Zhang X, Ding D, Fu W and Yang H 2015 RSC Adv. 5 6429
[28] Wassell D T and Embery G 1996 Biomaterials 17 859
[29] Li L, Hu J, Yang W and Alivisatos A P 2001 Nano Lett. 1 349
[30] Takei K, Fang H, Kumar S B, Kapadia R, Gao Q, Madsen M, Kim H S, Liu C H, Chueh Y L, Plis E, Krishna S, Bechtel H A, Guo J and Javey A 2011 Nano Lett. 11 5008
[31] Lee Y L, Chi C F and Liau S Y 2010 Chem. Mater. 22 922
[32] Turaeva N N, Oksengendler B L and Uralov I 2011 Appl. Phys. Lett. 98 243103
[33] Schaller R D and Klimov V I 2004 Phys. Rev. Lett. 92 186601
[34] Pradhan S, Stavrinadis A, Gupta S, Christodoulou S and Konstantatos G 2017 ACS Energy Lett. 2 1444
[1] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[2] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[3] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[4] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[5] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[6] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[7] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[8] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[9] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[10] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[11] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[12] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[13] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[14] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[15] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
No Suggested Reading articles found!