INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application |
Shi Su(苏适)1, Jinwen Ma(马晋文)2, Wanlong Zuo(左万龙)3, Jun Wang(汪俊)1, Li Liu(刘莉)1, Shuang Feng(冯爽)1, Tie Liu(刘铁)1, Wuyou Fu(付乌有)1, Haibin Yang(杨海滨)1 |
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 College of New Energy, Bohai University, Jinzhou 121013, China;
3 Anhui Provincial Key Laboratory of Optoelectric Materials Science and Technology, Anhui Normal University, Wuhu 241000, China |
|
|
Abstract In this study, TiO2 nanoforest films consisting of nanotubes have been synthesized by a simple hydrothermal method and a subsequent sintering technique. The hydrothermal reaction time is important for the controlling of the nanotube diameter and the specific surface area of holistic TiO2 films. When the hydrothermal process reaction time is up to 8 hours, the diameter of the nanotube is about 10 nm, and the specific surface area of TiO2 nanoforest films reaches the maximum. CdS nanoparticles are synthesized on TiO2 nanoforest films by the successive ionic layer adsorption and reaction (SILAR) technique. The transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX) mapping results verify that TiO2/CdS heterostructures are realized. A significant red-shift of the absorption edge from 380 nm to 540 nm can be observed after the pure TiO2 film is sensitized by CdS nanoparticles. Under irradiation of light, the current density of the optimal TiO2/CdS photoanode is 2.30 mA·cm-2 at 0 V relative to the saturated calomel electrode (SCE), which is 6 times stronger than that of the pure TiO2 photoanode. This study suggests that the TiO2 nanoforest consisting of interlinked pony-size nanotubes is a promising nanostructure for photoelectrochemical.
|
Received: 22 March 2018
Revised: 22 May 2018
Accepted manuscript online:
|
PACS:
|
88.30.mj
|
(Composite materials)
|
|
88.40.ff
|
(Performance testing)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272086 and 11704004), the Technology Development Program of Jilin Province, China (Grant No. 20130206078GX), and the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA20). |
Corresponding Authors:
Haibin Yang
E-mail: yanghb@jlu.edu.cn
|
Cite this article:
Shi Su(苏适), Jinwen Ma(马晋文), Wanlong Zuo(左万龙), Jun Wang(汪俊), Li Liu(刘莉), Shuang Feng(冯爽), Tie Liu(刘铁), Wuyou Fu(付乌有), Haibin Yang(杨海滨) Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application 2018 Chin. Phys. B 27 088802
|
[1] |
Grätzel M 2001 Nature 414 338
|
[2] |
O'Regan B and Grätzel M 1991 Nature 353 737
|
[3] |
Li Z, Luo W, Zhang M, Feng J and Zou Z 2013 Energy Environ. Sci. 6 347
|
[4] |
Xu J, Hu Z, Zhang J, Xiong W, Sun L, Wan L, Zhou R, Jiang Y and Lee C 2006 Adv. Funct. Mater. 16 1067
|
[5] |
Choi H, Sofranko A C and Dionysiou D D 2006 Adv. Funct. Mater. 16 1067
|
[6] |
Shahzad N, Risplendi F, Pugliese D, Bianco S, Sacco A, Lamberti A, Gazia R, Tresso E and Cicero G 2018 Chem. Commun. 54 58
|
[7] |
Fu W, Li G, Wang Y, Zeng S, Yan Z, Wang J, Xin S, Zhang L, Wu S and Zhang Z 2018 Chem. Commun. 54 58
|
[8] |
Li S, Qiu J, Ling M, Peng F, Wood B and Zhang S 2013 ACS Appl. Mater. Interfaces 5 11129
|
[9] |
Cao F, Xiong J, Wu F, Liu Q, Shi Z, Yu Y, Wang X and Li L 2016 ACS Appl. Mater. Interfaces 8 12239
|
[10] |
Shao F, Sun J, Gao L, Yang S and Luo J 2008 J. Am. Chem. Soc. 130 1124
|
[11] |
Sun W, Yu Y, Pan H, Gao X, Chen Q and Peng L 2008 J. Am. Chem. Soc. 130 1124
|
[12] |
Tian J, Zhang Q, Zhang L, Gao R, Shen L, Zhang S, Qu X and Cao G 2013 Nanoscale 5 936
|
[13] |
Robel I, Kuno M and Kamat P 2007 J. Am. Chem. Soc. 129 4136
|
[14] |
Etgar L, Yanover D, Čapek R K, Vaxenburg R, Xue Z, Liu B, Nazeeruddin M K, Lifshitz E and Grätzel M 2013 Adv. Funct. Mater. 23 2736
|
[15] |
Li Z, Yu L, Liu Y and Sun S 2014 J. Mater. Sci. 49 6392
|
[16] |
Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y and Zhu L 2012 Chem. Eng. J. 180 151
|
[17] |
Pan R, Wu Y and Liew K 2010 Appl. Surf. Sci. 256 6564
|
[18] |
Luo S, Shen H, Hu W, Yao Z, Li J, Oron D, Wang N and Lin H 2016 RSC Adv. 6 21156
|
[19] |
Zolfaghari-Isavandi Z and Shariatinia Z 2018 J. Alloys Compd. 737 99
|
[20] |
Nguyen V M, Cai Q Y and Grimes C A 2016 J. Colloid Interf. Sci. 483 287
|
[21] |
Su W, Chen J, Wu L, Wang X, Wang X and Fu X 2008 Appl. Catal. B-Environ. 77 264
|
[22] |
Seol M, Jang J, Cho S, Lee J S and Yong K 2013 Chem. Mater. 25 184
|
[23] |
Nicolau Y F 1985 Appl. Surf. Sci. 22/23 1061
|
[24] |
Banerjee S, Mohapatra S K, Das P P and Misra M 2008 Chem. Mater. 20 6784
|
[25] |
Zhu W, Liu X, Liu H, Tong D, Yang J and Peng J 2010 J. Am. Chem. Soc. 132 12619
|
[26] |
Kim H, Noh K, Choi C, Khamwannah J, Villwock D and Jin S 2011 Langmuir 27 10191
|
[27] |
Yao H, Ma J, Mu Y, Chen Y, Su S, Lv P, Zhang X, Ding D, Fu W and Yang H 2015 RSC Adv. 5 6429
|
[28] |
Wassell D T and Embery G 1996 Biomaterials 17 859
|
[29] |
Li L, Hu J, Yang W and Alivisatos A P 2001 Nano Lett. 1 349
|
[30] |
Takei K, Fang H, Kumar S B, Kapadia R, Gao Q, Madsen M, Kim H S, Liu C H, Chueh Y L, Plis E, Krishna S, Bechtel H A, Guo J and Javey A 2011 Nano Lett. 11 5008
|
[31] |
Lee Y L, Chi C F and Liau S Y 2010 Chem. Mater. 22 922
|
[32] |
Turaeva N N, Oksengendler B L and Uralov I 2011 Appl. Phys. Lett. 98 243103
|
[33] |
Schaller R D and Klimov V I 2004 Phys. Rev. Lett. 92 186601
|
[34] |
Pradhan S, Stavrinadis A, Gupta S, Christodoulou S and Konstantatos G 2017 ACS Energy Lett. 2 1444
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|