Special Issue:
SPECIAL TOPIC—Post-Moore era: Materials and device physics
|
SPECIAL TOPIC—Post-Moore era: Materials and device physics |
Prev
Next
|
|
|
P-type cold-source field-effect transistors with TcX2 and ReX2 (X=S, Se) cold source electrodes: A computational study |
Qianwen Wang(汪倩文)1, Jixuan Wu(武继璇)2, Xuepeng Zhan(詹学鹏)2, Pengpeng Sang(桑鹏鹏)2,†, and Jiezhi Chen(陈杰智)2,‡ |
1 School of Information Science & Technology, Qingdao University of Science & Technology, Qingdao 266000, China; 2 School of Information Science and Engineering, Shandong University, Qingdao 266000, China |
|
|
Abstract Cold-source field-effect transistors (CS-FETs) have been developed to overcome the major challenge of power dissipation in modern integrated circuits. Cold metals suitable for n-type CS-FETs have been proposed as the ideal electrode to filter the high-energy electrons and break the thermal limit on subthreshold swing (SS). In this work, regarding the p-type CS-FETs, we propose TcX2 and ReX2 (X = S, Se) as the injection source to realize the sub-thermal switching for holes. First-principles calculations unveils the cold-metal characteristics of monolayer TcX2 and ReX2, possessing a sub-gap below the Fermi level and a decreasing DOS with energy. Quantum device simulations demonstrate that TcX2 and ReX2 can enable the cold source effects in WSe2 p-type FETs, achieving steep SS of 29-38 mV/dec and high on/off ratios of (2.3-5.6)×107. Moreover, multilayer ReS2 retains the cold metal characteristic, thus ensuring similar CS-FET performances to that of the monolayer source. This work underlines the significance of cold metals for the design of p-type CS-FETs.
|
Received: 26 July 2023
Revised: 12 September 2023
Accepted manuscript online: 07 October 2023
|
PACS:
|
72.90.+y
|
(Other topics in electronic transport in condensed matter)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
05.60.Gg
|
(Quantum transport)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project was supported by the National Natural Science Foundation of China (Grant Nos.62034006, 92264201, and 62104134) and the Natural Science Foundation of Shandong Province of China (Grant Nos.ZR2023QF076 and ZR2023QF054). |
Corresponding Authors:
Pengpeng Sang, Jiezhi Chen
E-mail: ppsang@sdu.edu.cn;chen.jiezhi@sdu.edu.cn
|
Cite this article:
Qianwen Wang(汪倩文), Jixuan Wu(武继璇), Xuepeng Zhan(詹学鹏),Pengpeng Sang(桑鹏鹏), and Jiezhi Chen(陈杰智) P-type cold-source field-effect transistors with TcX2 and ReX2 (X=S, Se) cold source electrodes: A computational study 2023 Chin. Phys. B 32 127203
|
[1] Waldrop M M 2016 Nature 530 144 [2] Takagi S, Iisawa T, Tezuka T, Numata T, Nakaharai S, Hirashita N, Moriyama Y, Usuda K, Toyoda E, Dissanayake S, Shichijo M, Nakane R, Sugahara S, Takenaka M and Sugiyama N 2008 IEEE Trans. Electron Devices 55 21 [3] Ionescu A M and Riel H 2011 Nature 479 329 [4] Kim S, Myeong G, Shin W, Lim H, Kim B, Jin T, Chang S, Watanabe K, Taniguchi T and Cho S 2020 Nat. Nanotechnol. 15 203 [5] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 Nature 526 91 [6] Appenzeller J, Lin Y M, Knoch J and Avouris P 2004 Phys. Rev. Lett. 93 196805 [7] Zhou W, Zhang S, Wang Y, Guo S, Qu H, Bai P, Li Z and Zeng H 2020 Adv. Electron. Mater. 6 1901281 [8] Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gomez-Herrero J, Ares P, Zamora F, Zhu Z and Zeng H 2018 Chem. Soc. Rev. 47 982 [9] Ersan F, Kecik D, Ozcelik V, Kadioglu Y, Akturk O, Durgun E, Akturk E and Ciraci S 2019 Appl. Phys. Rev. 6 021308 [10] Hong Y, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M, Sun D, Chen X, Cheng H and Ren W 2020 Science 369 670 [11] Wang L, Shi Y, Liu M, Zhang A, Hong Y, Li R, Gao Q, Chen M, Ren W, Cheng H, Li Y and Chen X 2021 Nat. Commun. 12 2361 [12] Cao L, Zhou G, Wang Q, Ang L K and Ang Y 2021 Phys. Rev. Appl. 118 013106 [13] Wang Q, Cao L, Liang S, Wu W, Wang G, Lee C, Ong W, Yang H, Ang L, Yang S and Ang Y 2021 NPJ 2D Mater. Appl. 5 71 [14] Appenzeller J, Lin Y M, Knoch J and Avouris P 2004 Phys. Rev. Lett. 93 196805 [15] Ionescu A M and Riel H 2011 Nature 479 329 [16] Shin G H, Koo B, Park H, Woo Y, Lee J E and Choi S Y 2018 ACS Appl. Mater. Interfaces 10 40212 [17] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 Nature 526 91 [18] Cao W, Sarkar D, Khatami Y, Kang J and Banerjee K 2014 AIP Adv. 4 067141 [19] Lv Y, Qin W, Huang Q, Chang S, Wang H and He J 2017 IEEE Trans. Electron Devices 64 2694 [20] Brahma M, Kabiraj A, Saha D and Mahapatra S 2018 Sci. Rep. 8 5993 [21] Jo J and Shin C 2016 IEEE Electron Device Lett. 37 245 [22] Kwon D, Chatterjee K, Tan A J, Yadav A K, Zhou H, Sachid A B, Reis R D, Hu C and Salahuddin S 2018 IEEE Electron Device Lett. 39 300 [23] Guo S, Prentki R J, Jin K, Chen C L and Guo H 2021 IEEE Trans. Electron Devices 68 911 [24] Yu Z, Wang H, Li W, Xu S, Song X, Wang S, Wang P, Zhou P, Shi Y, Chai Y and Wang X 2017 Proceedings of IEEE International Electron Device Meeting (IEDM), December 2--6, 2017, San Francisco, USA, pp. 23.6.1 [25] Qiu C, Liu F, Xu L, Deng B, Xiao M, Si J, Lin L, Zhang Z, Wang J, Guo H, Peng H and Peng L M 2018 Science 361 387 [26] Liu F, Qiu C, Zhang Z, Peng L M, Wang J, Wu Z and Guo H 2018 Proceedings of IEEE International Electron Device Meeting (IEDM), December 1--5, 2018, San Francisco, USA, pp. 31.2.1 [27] Tang Z, Liu C, Huang X, Zeng S, Liu L, Li J, Jiang Y G, Zhang D W and Zhou P 2021 Nano Lett. 21 1758 [28] Liu F, Qiu C, Zhang Z, Peng L M, Wang J and Guo H 2018 IEEE Trans. Electron Devices 65 2736 [29] Wang Q, Sang P, Ma X, Wang F, Wei W, Zhang W, Li Y and Chen J 2018 Proceedings of IEEE International Electron Device Meeting (IEDM), December 12--18, 2018, San Francisco, USA, pp. 22.4.1 [30] Wang Q, Sang P, Wang F, Wei W, Li Y and Chen J 2021 Appl. Phys. Express 14 074003 [31] Nandan K, Bhowmick B, Chauhan Y and Agarwal A 2023 Phys. Rev. Appl. 19 064058 [32] Wang Q, Sang P, Wang F, Wei W and Chen J 2021 IEEE Trans. Electron Devices 68 4758 [33] Liu F 2020 Phys. Rev. Appl. 13 064037 [34] Shin W, Myeong G, Sung K, Kim S, Lim H, Kim B, Jin T, Park J, Watanabe K, Taniguchi T, Liu F and Cho S 2022 Appl. Phys. Lett. 120 243506 [35] Smidstrup S, Markussen T, Vancraeyveld P, et al. 2020 J. Phys. Condens. Matter 32 015901 [36] Van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese J M 2018 Comput. Phys. Commun. 226 39 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B: Condens. Matter 31 6207 [39] Zhang Y, Yin L, Chu J, Shifa T, Xia J, Wang F, Wen Y, Zhan X, Wang Z and He J 2018 Adv. Mater. 30 1803665 [40] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703 [41] International technology roadmap for semiconductors (ITRS) [42] Pan Y, Dai J, Xu L, Yang J, Zhang X, Yan J, Shi B, Liu S, Hu H, Wu M and Lu J 2020 Phys. Rev. Appl. 14 024016 [43] Quhe R, Liu J, Wu J, Yang J, Wang Y, Li Q, Li T, Guo Y, Yang J, Peng H, Lei M and Lu J 2019 Nanoscale 11 532 [44] Wang Y, Fei R, Quhe R, Li J, Zhang H, Zhang X, Shi B, Xiao L, Song Z, Yang J, Shi J, Pan F and Lu J 2019 ACS Appl. Mater. Interfaces 10 23344 [45] Sun X, Song Z, Huo N, Liu S, Yang C, Yang J, Wang W and Lu J 2021 J. Mater. Chem. C 9 14683 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|