Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118103    DOI: 10.1088/1674-1056/acd7e3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy

Wei-Peng Chen(陈伟鹏)1, Hua Hou(侯华)1,3, Yun-Tao Zhang(张云涛)1, Wei Liu(柳伟)1, and Yu-Hong Zhao(赵宇宏)2,1,4,†
1 School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China;
2 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
4 Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
Abstract  Parameter calculation and result storage, as two necessary steps in phase-field simulation play an important role in ensuring the accuracy of simulation results. A strategy of parameter calculation and result storage is presented for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy under isothermal solidification. Based on the phase diagram and empirical formulas, key parameters of the phase-field model, such as equilibrium partition coefficient k, liquidus slope m, solutal diffusion coefficient in liquid Dl, and solutal diffusion coefficient in solid Ds, can be obtained. Both structured grid method and structured point method can be used to store simulation results, but using the latter method will reduce about 60% storage space and 37.5% storage time compared with the former. Finally, convergent simulation results of α-Mg dendrite growth are obtained and they are in good agreement with the experimental results about optical micrograph, which verify the accuracy of parameters and stability of storage method.
Keywords:  parameter calculation      result storage      phase-field method      dendrite growth  
Received:  02 February 2023      Revised:  25 April 2023      Accepted manuscript online:  23 May 2023
PACS:  81.30.Fb (Solidification)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52074246, 52275390, 52205429, and 52201146), the National Defense Basic Scientific Research Program of China (Grant Nos. JCKY2020408B002 and WDZC2022-12), the Science and Technology Major Project of Shanxi Province, China (Grant Nos. 20191102008 and 20191102007), and the Guiding Local Science and Technology Development Projects by the Central Government, China (Grant Nos. YDZJSX2022A025 and YDZJSX2021A027).
Corresponding Authors:  Yu-Hong Zhao     E-mail:  zhaoyuhong@nuc.edu.cn

Cite this article: 

Wei-Peng Chen(陈伟鹏), Hua Hou(侯华), Yun-Tao Zhang(张云涛), Wei Liu(柳伟), and Yu-Hong Zhao(赵宇宏) Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy 2023 Chin. Phys. B 32 118103

[1] Chen L Q and Zhao Y H 2022 Prog. Mater. Sci. 124 100868
[2] Geslin P A, Chen C H, Tabrizi A M and Karma A 2021 Acta Mater. 202 42
[3] Chen C H, Tabrizi A M, Geslin P A and Karma A 2021 Acta Mater. 202 463
[4] Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S and Ferry M 2021 Sci. Adv. 7 eabf3039
[5] Zhao Y H 2022 Intermetallics 144 107528
[6] Zhao Y H, Liu K X, Hou H and Chen L Q 2022 Mater. Design 216 110555
[7] He R, Wang M T, Jin J F and Zong Y P 2017 Chin. Phys. B 26 128201
[8] Zhao Y H 2023 Front. Mater. 10 1145833
[9] Ohno M, Shibuta Y and Takaki T 2019 Mater. Trans. 60 170
[10] Zhang A, Guo Z P, Jiang B, Du J L, Wang C H, Huang G S, Zhang D F, Liu F, Xiong S M and Pan F S 2021 Acta Mater. 214 117005
[11] Wang N Q, Korba D, Liu Z X, Prabhu R, Priddy M W, Yang S F, Chen L and Li L K 2021 Comput. Methods Appl. Mech. Engrg. 385 114026
[12] Greenwood M, Shampur K N, Ofori-Opoku N, Pinomaa T, Wang L, Gurevich S and Provatas N 2018 Comp. Mater. Sci. 142 153
[13] Sakane S, Aoki T and Takaki T 2022 Comp. Mater. Sci. 211 111507
[14] Guo Y Q, Luo S, Wang W L and Zhu M Y 2022 J. Mater. Res. Technol. 17 2059
[15] Sun W Z, Yan R, Zhang Y Z, Dong H B and Jing T 2019 Comp. Mater. Sci. 160 149
[16] Zhang Z D, Cao Y T, Sun D K, Xing H, Wang J C and Ni Z H 2020 Chin. Phys. B 29 028103
[17] Xing H, An Q, Dong X L and Han Y S 2022 Chin. Phys. B 31 048104
[18] Zhu C S, Gao Z H, Lei P, Feng L and Zhao B R 2022 Chin. Phys. B 31 068102
[19] Tourret D, Liu H and Llorca J 2022 Prog. Mater. Sci. 123 100810
[20] Chen Q Q, Zhang L, Tang S, Liang C P, Ma Y Z and Liu W S 2021 Calphad 74 102271
[21] Chen W P, Zhao Y H, Yang S, Zhang D and Hou H 2021 Adv. Compos. Hybrid Mater. 4 371
[22] Zhao Y H 2023 Npj Comput. Mater. 9 94
[23] Yamada R, Kudo M, Kim G, Takaki T, Shibuta Y and Ohno M 2022 Comp. Mater. Sci. 204 111173
[24] Sun W Z, Xie Y, Yan R, Ma S D, Dong H B and Jing T 2019 Metall. Mater. Trans. B 50 2487
[25] Echebarria B, Folch R, Karma A and Plapp M 2004 Phys. Rev. E 70 061604
[26] Ohno M and Matsuura K 2009 Phys. Rev. E 79 031603
[27] Du J L, Zhang A, Guo Z P, Yang M H, Li M, Liu F and Xiong S M 2018 Acta Mater. 161 35
[28] Xing H, Dong X L, Wang J Y and Jin K X 2018 Metall. Mater. Trans. B 49 1547
[29] Boukellal A K, Rouby M and Debierre J M 2021 Comp. Mater. Sci. 186 110051
[30] Ouyang Y F, Liu K, Peng C Y, Chen H M, Tao X M and Du Y 2019 Calphad 65 204
[31] Zhong W and Zhao J C 2017 Metall. Mater. Trans. A 48 5778
[32] Yang S, Su X P, Wang J H, Yin F C, Tang N Y, Li Z, Wang X M, Zhu Z X, Tu H and Li X Q 2011 Metall. Mater. Trans. A 42 1785
[33] Becker M, Dantzig J, Kolbe M, Wiese S T and Kargl F 2019 Acta Mater. 165 666
[34] Du J L, Zhang A, Guo Z P, Yang M H, Li M and Xiong S M 2017 Acs Omega 2 8803
[35] Gale W F and Totemeier T C 2004 Smithells Metals Reference Book, 8nd edn. (Oxford:Butterworth-Heinemann) pp. 8-2-14-1
[36] Kammerer C C, Kulkarni N S, Warmack R J and Sohn Y H 2014 J. Alloys Compd. 617 968
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[3] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
[4] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[5] Phase-field study of the second phase particle effect on texture evolution of polycrystalline material
Lu Yan-Li (卢艳丽), Zhang Liu-Chao (张刘超), Zhou Ying-Ying (周影影), Chen Zheng (陈铮). Chin. Phys. B, 2014, 23(6): 069102.
[6] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[7] Solute distribution in KNbO3 melt-solution and its effect on dendrite growth during rapid solidification
Pan Xiu-Hong(潘秀红), Jin Wei-Qing(金蔚青), Liu Yan(刘岩), and Ai Fei(艾飞). Chin. Phys. B, 2009, 18(2): 699-703.
[8] Phase-field simulation of the effect of interaction among ordered domains on interdiffusion in Ni--Al--Cr alloys
Zhang Yu-Xiang(张玉祥), Wang Jin-Cheng(王锦程), Yang Yu-Juan(杨玉娟), Yang Gen-Cang(杨根仓), and Zhou Yao-He(周尧和). Chin. Phys. B, 2009, 18(10): 4407-4412.
[9] Phase-field study for the behaviour of precipitate under applied stress
Zhang Yu-Xiang(张玉祥), Wang Jin-Cheng(王锦程), Yang Yu-Juan(杨玉娟), Yang Gen-Cang(杨根仓), and Zhou Yao-He(周尧和). Chin. Phys. B, 2008, 17(9): 3523-3530.
[10] Modelling the crystal growth in highly undercooled alloy melts by non-isothermal phase-field method
Li Mei-E (李梅娥), Yang Gen-Cang (杨根仓), Zhou Yao-He (周尧和). Chin. Phys. B, 2005, 14(4): 838-843.
No Suggested Reading articles found!