|
|
Construction of monolayer IrTe2 and the structural transition under low temperatures |
Aiwei Wang(王爱伟)1,2, Ziyuan Liu(刘子媛)1,2, Jinbo Pan(潘金波)1,2, Qiaochu Li(李乔楚)1,2, Geng Li(李更)1,2,3, Qing Huan(郇庆)1, Shixuan Du(杜世萱)1,2,3,4, Hong-Jun Gao(高鸿钧)1,2,3,4 |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Bulk iridium ditelluride (IrTe2) is a layered material and is known for its interesting electronic and structural properties, such as large spin-orbit coupling, charge ordering, and superconductivity. However, so far there is no experimental study about the fabrication of monolayer IrTe2. Here we report the formation of IrTe2 monolayer on Ir(111) substrate by direct tellurization method. Scanning tunneling microscope (STM) images show the coexistence of 1/5 phase and 1/6 phase structures of IrTe2 at room temperature. We also obtained STM images showing distorted stripe feature under low temperatures. This stripe feature is possibly induced by the strain between the IrTe2 monolayer and the metal substrate. Density functional theory (DFT) calculations show that the IrTe2 monolayer has strong interaction with the underlying Ir(111) substrate.
|
Received: 08 April 2020
Revised: 19 April 2020
Accepted manuscript online:
|
PACS:
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the National Key Research & Development Project of China (Grant Nos. 2019YFA0308500, 2018YFA0305800, and 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 51991340, 61888102, and 11888101), and the Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000). |
Corresponding Authors:
Geng Li
E-mail: gengli.iop@iphy.ac
|
Cite this article:
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Construction of monolayer IrTe2 and the structural transition under low temperatures 2020 Chin. Phys. B 29 078102
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Zhang G Y, Du S X, Wu K H and Gao H J 2018 Science 360 673
|
[3] |
Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J and Gao H J 2014 Small 10 2215
|
[4] |
Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
|
[5] |
Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803
|
[6] |
Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[7] |
Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
|
[8] |
Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820
|
[9] |
Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
|
[10] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[11] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[12] |
Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
|
[13] |
Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K J, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926
|
[14] |
Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
|
[15] |
Chen C, Kim J S, Yang Y F, Cao G X, Jin R Y and Plummer E W 2017 Phys. Rev. B 95 094118
|
[16] |
Ko K T, Lee H H, Kim D H, Yang J J, Cheong S W, Eom M J, Kim J S, Gammag R, Kim K S, Kim H S, Kim T H, Yeom H W, Koo T Y, Kim H D and Park J H 2015 Nat. Commun. 6 7342
|
[17] |
Pascut G L, Birol T, Gutmann M J, Yang J J, Cheong S W, Haule K and Kiryukhin V 2014 Phys. Rev. B 90 195122
|
[18] |
Oh Y S, Yang J J, Horibe Y and Cheong S W 2013 Phys. Rev. Lett. 110 127209
|
[19] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[20] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[21] |
Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
|
[22] |
Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W and Kiryukhin V 2014 Phys. Rev. Lett. 112 086402
|
[23] |
Kim H S, Kim S R, Kim K, Min B I, Cho Y H, Wang L H, Cheong S W and Yeom H W 2016 Nano Lett. 16 4260
|
[24] |
Wu R T, Yan L H, Zhang Y F, Ren J H, Bao D L, Zhang H G, Wang Y L, Du S X, Huan Q and Gao H J 2015 J. Phys. Chem. C 119 8208
|
[25] |
Kresse G 1996 Phys. Rev. B 54 11169
|
[26] |
Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
|
[27] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[28] |
Kresse G 1999 Phys. Rev. B 59 1758
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[30] |
Machida T, Fujisawa Y, Igarashi K, Kaneko A, Ooi S, Mochiku T, Tachiki M, Komori K, Hirata K and Sakata H 2013 Phys. Rev. B 88 245125
|
[31] |
Hsu P J, Mauerer T, Vogt M, Yang J J, Oh Y S, Cheong S W, Bode M and Wu W D 2013 Phys. Rev. Lett. 111 266401
|
[32] |
Huang T, Zhao J, Peng M, Popov A A, Yang S F, Dunsch L and Petek H 2011 Nano Lett. 11 5327
|
[33] |
Lu H L, Cao Y, Qi J, Bakker A, Strassert C A, Lin X, Ernst K H, Du S X, Fuchs H and Gao H J 2018 Nano Lett. 18 4704
|
[34] |
Harikumar K R, Polanyi J C, Sloan P A, Ayissi S and Hofer W A 2006 J. Am. Chem. Soc. 128 16791
|
[35] |
Dai J X, Haule K, Yang J J, Oh Y S, Cheong S W and Wu W D 2014 Phys. Rev. B 90 235121
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|