Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 113401    DOI: 10.1088/1674-1056/26/11/113401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Helium nano-bubble bursting near the nickel surface

Heng-Feng Gong(龚恒风)1,2,3,4, Min Liu(刘敏)2, Fei Gao(高飞)4, Rui Li(李锐)1, Yan Yan(严岩)1, Heng Huang(黄恒)1, Tong Liu(刘彤)1, Qi-Sen Ren(任啟森)1
1. ATF R & D Accident Tolerant Fuel Research and Development, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen 518000, China;
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Division of Nuclear Materials and Engineering, Shanghai 201800, China;
3. Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China;
4. Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Abstract  

We have investigated the expansion and bursting of a helium nano-bubble near the surface of a nickel matrix using a molecular dynamics simulation. The helium atoms erupt from the bubble in an instantaneous and volcano-like process, which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. During the kinetic releasing process, the channel may undergo the “open” and “close” states more than once due to the variation of the stress inside the nano-bubble. The ratio between the number of helium atoms and one of vacancies can directly reflect the releasing rate under different temperatures and crystallographic orientation conditions, respectively. Moreover, a special relationship between the stress and He-to-vacancy ratio is also determined. This model is tested to compare with the experimental result from Hastelloy N alloys implanted by helium ions and satisfactory agreement is obtained.

Keywords:  molecular dynamics      nano-bubbles      near surface  
Received:  01 June 2017      Revised:  19 July 2017      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  36.40.Sx (Diffusion and dynamics of clusters)  
  68.03.Cd (Surface tension and related phenomena)  
Fund: 

Project supported by the Program of International Science and Technology Cooperation of China (Grant No. 2014DFG60230), the National Basic Research Program of China (Grant No. 2010CB934504), the Strategically Leading Program of the Chinese Academy of Sciences (Grant No. XDA02040100), the Shanghai Municipal Science and Technology Commission, China (Grant No. 13ZR1448000), and the National Natural Science Foundation of China (Grant Nos. 91326105 and 21306220).

Corresponding Authors:  Heng-Feng Gong     E-mail:  gonghengfeng@cgnpc.com.cn

Cite this article: 

Heng-Feng Gong(龚恒风), Min Liu(刘敏), Fei Gao(高飞), Rui Li(李锐), Yan Yan(严岩), Heng Huang(黄恒), Tong Liu(刘彤), Qi-Sen Ren(任啟森) Helium nano-bubble bursting near the nickel surface 2017 Chin. Phys. B 26 113401

[1] Bloom E E, Busby J T, Duty C E, Maziasz P J, McGreevy T E, Nelson B E, Pint B A, Tortorelli P F and Zinkle S J 2007 J. Nucl. Mater. 367 1
[2] Zinkle S J and Busby J T 2009 Mater. Today 12 12
[3] McCoy Jr H E 1978 Status of Materials Development for Molten Salt Reactors(United States) pp. 1-40
[4] Liu M 2013 Investigation on Corrosion Behavior and Irradiation Performance of the Structural Material(Hastelloy N Alloy) in Molten Salt Reactor(Doctoral Dissertation, Shanghai Institute of Applied Physics) pp. 75-87
[5] Stoller R E and Odette G R 1988 J. Nucl. Mater. 154 286
[6] Lewis M B and Farrell K 1986 Nucl. Instrum. Methods Phys. Res. B 16 163
[7] Bloom E E, Busby J T, Duty C E, Maziasz P J, McGreevy T E, Nelson B E, Pint B A, Tortorelli P F and Zinkle S J 2007 J. Nucl. Mater. 367 1
[8] Evans J H and van Veen A 1996 J. Nucl. Mater. 233-237 1179
[9] Donald F C 2005 Fus. Sci. Tech. 48 539
[10] Morishita K 2007 Phil. Mag. 87 1139
[11] Kajita S, Daeki T, Yoshida N, Ohno N and Iwamae A 2010 Appl. Phys. Expr. 3 085204
[12] Cipiti B B and Kulcinski G L 2005 J. Nucl. Mater. 347 298
[13] Zenobia S J and Kulcinski G L 2009 Fus. Sci. Tech. 56 352
[14] Sefta F, Juslin N and Wirth B D 2013 J. Appl. Phys. 114 243518
[15] Sefta F, Hammond K D, Juslin N and Wirth B D 2013 Nucl. Fus. 53 073015
[16] Zhang B L, Wang J, Li M and Hou Q 2013 J. Nucl. Mater. 438 178
[17] Ohno N, Hirahata Y, Yamagiwa M, Kajita S, Takagi M, Yoshida N, Yoshihara R, Tokunaga T and Tokitani M 2013 J. Nucl. Mater. 438 5879
[18] El-Atwani O, Hinks J A, Greaves G, Gonderman S, Qiu T, Efe M and Allain J P 2015 Sci. Rep. 4 4716
[19] http://lammps.sandia.gov/
[20] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[21] Baskes M I 1992 Phys. Rev. B 46 2727
[22] Daven D M, Tit N, Morris J R and Ho K M 1996 Chem. Phys. Lett. 256 195
[23] Deng H, Hu W, Shu X and Zhang B 2003 Surf. Sci. 543 95
[24] Yang J, Hu W, Deng H and Zhao D 2004 Surf. Sci. 572 439
[25] Hu W, Zhang B, Huang B, Gao F and Bacon D J 2001 J. Phys.:Conden. Matter 13 1193
[26] Hu W, Deng H, Yuan X and Fukumoto M 2003 Euro. Phys. J. B 34 429
[27] Hu W, Shu X and Zhang B 2002 Comput. Mater. Sci. 23 175
[28] Hu W and Fukumoto M 2002 Modell. Simula. Mater. Sci. 10 707
[29] Johnson R A 1990 Phys. Rev. B 41 9717
[30] Baskes M I and Melius C F 1979 Phys. Rev. B 20 3197
[31] Johnson R A 1973 J. Phys. F:Metal Phys. 3 295
[32] Xia J X, Hu W Y, Yang J Y and Ao B Y 2006 Phys. Stat. Soli. B 243 579
[33] Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1
[34] Snow C S and Brewer L N 2008 J. Nucl. Mater. 374 147
[35] Gowgill D F 2005 Fus. Sci. Tech. 48 539
[36] Parish C M, Hijazi H, Meyer H M and Meyer F W 2014 Acta Mater. 62 173
[37] Adda Y, Beyeler M and Brebec G 1975 Thin Solid Films 25 107
[38] Hummer G, Lawrence R P and Angel E G 1998 J. Chem. Phys. 109 7885
[39] Hünenberger P H 2002 J. Chem. Phys. 116 6880
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!