Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016801    DOI: 10.1088/1674-1056/28/1/016801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Approximate expression of Young's equation and molecular dynamics simulation for its applicability

Shu-Wen Cui(崔树稳)1,2, Jiu-An Wei(魏久安)2,3, Wei-Wei Liu(刘伟伟)1, Ru-Zeng Zhu(朱如曾)2, Qian Ping(钱萍)4
1 Department of Physics and Information Engineering, Cangzhou Normal University, Cangzhou 061001, China;
2 State Key Laboratory of Nonlinear Mechanics(LNM) and Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Science, Beijing 100190, China;
3 Silfex, a Division of Lam Research, 950 South Franklin Street, Eaton, Ohio, 45320, USA;
4 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

In 1805, Thomas Young was the first to propose an equation (Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al.[College Phys. 4 7 (1985)] obtained the most simple and convenient approximate formula, known as the Zhu-Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard-Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu-Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.

Keywords:  molecular dynamics simulation      Young's equation      surface tension      Zhu-Qian approximate formula of Young'      s equation  
Received:  15 June 2018      Revised:  31 October 2018      Accepted manuscript online: 
PACS:  68.08.Bc (Wetting)  
  68.03.Cd (Surface tension and related phenomena)  
  61.46.Fg (Nanotubes)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11072242), the Key Scientific Studies Program of Hebei Province Higher Education Institute, China (Grant No. ZD2018301), and Cangzhou National Science Foundation, China (Grant No. 177000001).

Corresponding Authors:  Ru-Zeng Zhu     E-mail:  zhurz@lnm.imech.ac.cn

Cite this article: 

Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Wei-Wei Liu(刘伟伟), Ru-Zeng Zhu(朱如曾), Qian Ping(钱萍) Approximate expression of Young's equation and molecular dynamics simulation for its applicability 2019 Chin. Phys. B 28 016801

[1] Young T 1805 Philos. Trans. R. Soc. London 95 65
[2] Jameson G J and del Cerro M C G 1976 J. Chem. Soc. Furaduy I. 72 883
[3] White L R 1977 J. Chem. Soc. Faraday Trans 1. 73 390
[4] Gibbs J W 1957 The Collected Works of J Willard Gibbs (London: Yale University Press)
[5] Johnson R E 1959 J. Phys. Chem. 63 1655
[6] Barber A H, Cohen S R and Wagner H D 2004 Phys. Rev. Lett. 92 186103
[7] Delmas M, Monthioux M and Ondarc T 2011 Phys. Rev. Lett. 106 136102
[8] Roura P and Fort J 2004 J. Colloid Interface Sci. 272 420
[9] Ingebrigtsen T and Toxvaerd S 2007 J. Phys. Chem. C 111 8518
[10] Snoeijer J H and Andreotti B 2008 Phys. Fluids 20 057101
[11] Sikkenk J H, Indekeu J O and Menu G 1988 J. Stat. Phys. 52 23
[12] Nijmeijer M J P, Bruin C and Bakker A F 1990 Phys. Rev. A 42 6052
[13] Kimura T and Maruyama S 2002 Microscale Therm. Eng. 6 3
[14] Maruyama S, Kimura T and Lu M C 2002 Therm. Sci. & Eng. 6 23
[15] Seveno D, Blake T D and de Coninck J 2013 Phys. Rev. Lett. 111 096101
[16] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801
[17] Nishida S, Surblys D, Yamaguchi Y, Kuroda K, Kagawa M, Nakajima T and Fujimura H 2014 J. Chem. Phys. 140 074707
[18] Fernandez-Toledano J C, Blake T D, Lambert P and de Coninck J 2017 Adv. Colloid Interface Sci. 245 102
[19] Cui S W, Zhu R Z, Wei J A, Wang X S, Yang H X, Xu S H and Sun Z W 2015 Acta Phys. Sin. 64 116802 (in Chinese)
[20] Berim G O and Ruckenstein E 2009 J. Chem. Phys. 130 044709
[21] Maruyama S 2000 Advances in Numerical Heat Transfer (Vol. 2) (Minkowycz W J and Sparrow E M Ed.) (New York: Taylor & Francis) p.189
[22] Sinha S 2004 Molecular dynamics simulation of interfacial tension and contact angle of Lennard-Jones fluid (Ph.D. Dissertation) (University of California, Los Angeles)
[23] Shi B 2006 Molecular dynamics simulation of the surface tension and contact angle of argon and water (Ph.D. Dissertation) (University of California, Los Angeles)
[24] Zhu R Z and Qian S W 1985 College Phys. 4 7 (in Chinese)
[25] Zhu R Z 1992 Mech. Eng. 14 14 (in Chinese)
[26] Adamson A M and Gast A P 1997 Physical Chemistry of Surfaces (New Jersey: Wiley-Interscience Press)
[27] Allen M P and Tildesley D J 1989 Computer Simulation of Liquids (New York: Oxford University Press)
[28] Leroy F and Müller-Plathe F 2010 J. Chem. Phys. 133 044110
[29] Grzelak E M and Errington J R 2008 J. Chem. Phys. 128 014710
[30] Nishida S, Surblys D, Yamaguchi Y, Kuroda K, Kagawa M, Nakajima T and Fujimura H 2014 J. Chem. Phys. 140 074707
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!