Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016801    DOI: 10.1088/1674-1056/abb65a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Tolman length of simple droplet: Theoretical study and molecular dynamics simulation

Shu-Wen Cui(崔树稳)1,2, Jiu-An Wei(魏久安)3, Qiang Li(李强)1, Wei-Wei Liu(刘伟伟)1, Ping Qian(钱萍)4,†, and Xiao Song Wang(王小松)5
1 Department of Physics and Information Engineering, Cangzhou Normal University, Cangzhou 061001, China; 2 State Key Laboratory of Nonlinear Mechanics (LNM) and Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; 3 Silfex, a Division of Lam Research, 950 South Franklin Street, Eaton, Ohio 45320, USA; 4 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China; 5 Institute of Mechanics and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China
Abstract  In 1949, Tolman found the relation between the surface tension and Tolman length, which determines the dimensional effect of the surface tension. Tolman length is the difference between the equimolar surface and the surface of tension. In recent years, the magnitude, expression, and sign of the Tolman length remain an open question. An incompressible and homogeneous liquid droplet model is proposed and the approximate expression and sign for Tolman length are derived in this paper. We obtain the relation between Tolman length and the radius of the surface of tension (R s) and found that they increase with the R s decreasing. The Tolman length of plane surface tends to zero. Taking argon for example, molecular dynamics simulation is carried out by using the Lennard-Jones (LJ) potential between atoms at a temperature of 90 K. Five simulated systems are used, with numbers of argon atoms being 10140, 10935, 11760, 13500, and 15360, respectively. By methods of theoretical study and molecular dynamics simulation, we find that the calculated value of Tolman length is more than zero, and it decreases as the size is increased among the whole size range. The value of surface tension increases with the radius of the surface of tension increasing, which is consistent with Tolman's theory. These conclusions are significant for studying the size dependence of the surface tension.
Keywords:  Tolman length      surface tension radius of surface of tension      radius of equimolecular surface      molecular dynamics simulation  
Received:  01 July 2020      Revised:  13 August 2020      Accepted manuscript online:  09 September 2020
PACS:  68.03.Cd (Surface tension and related phenomena)  
  68.35.Md (Surface thermodynamics, surface energies)  
  68.08.Bc (Wetting)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700500), the Scientific Research and Innovation Team of Cangzhou Normal University, China (Grant No. cxtdl1907), the Key Scientific Study Program of Hebei Provincial Higher Education Institution, China (Grant No. ZD2020410), the Cangzhou Natural Science Foundation, China (Grant No. 197000001), and the General Scientific Research Fund Project of Cangzhou Normal University, China (Grant No. xnjjl1906).
Corresponding Authors:  Corresponding author. E-mail: qianping@ustb.edu.cn   

Cite this article: 

Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松) Tolman length of simple droplet: Theoretical study and molecular dynamics simulation 2021 Chin. Phys. B 30 016801

1 Rowlinson J S and Widom B1982 Molecular Theory of Capillarity (Oxford: Clarendon Press)
2 de Gennes P G 1985 Rev. Mod. Phys. 57 827
3 Tolman R C 1949 J. Chem. Phys. 17 333
4 Lu H M and Jiang Q 2005 Langmuir 21 779
5 Lei Y A, Bykov T, Yoo S and Zeng X C 2005 J. Am. Chem. Soc. 127 15346
6 Pogosov V V 1994 Solid State Commun. 89 1017
7 Lee W T, Salje E K H and Dove M T 1999 J. Phys.: Condens. Matter 11 7385
8 Sergii B, Mykola I, Konstantinos T, Vladimir S and Leonid B 2017 Phys. Rev. E 95 062801
9 Nikolay V A 2018 Chem. Phys. 500 19
10 Blokhuis E M and Kuipers J 2006 J. Chem. Phys. 124 074701
11 Bykov T V and Zeng X C 2001 J. Phys. Chem. B 105 11586
12 Tovbin Y K2020 Russ. J. Phys. Chem. A 84 1717
13 Bykov T V and Zeng X C 1999 J. Chem. Phys. 111 10602
14 Napari I and Laaksonen A2001 J. Chem. Phys. 114 5796
15 Joswiak M N, Duff N, Doherty M F and Peters B 2013 J. Phys. Chem. Lett. 4 4267
16 Block B J, Das S K, Oettel M, Virnau P and Binder K 2010 J. Chem. Phys. 133 154702
17 Joswiak M N, Do R, Doherty M F and Peters B 2016 J. Chem. Phys. 145 204703
18 Ono S and Kondo S In Flugge (editor) 1960 Encyclopedia of Physics, Vol. 10 (Berlin: Springer-Verlag)
19 Yan H and Zhu R Z 2012 Chin. Phys. B 21 083103
20 Zhu R Z and Wang X S 2010 Chin. Phys. B 19 076801
21 Wang X S and Zhu R Z 2013 Chin. Phys. B 22 036801
22 McGraw R and Laaksonen A 1997 J. Chem. Phys. 106 5284
23 Buff F P 1955 J. Chem. Phys. 23 419
24 Koga K, Zeng X C and Shchekin A K 1998 J. Chem. Phys. 109 4063
25 Nijmeijer M J P, Bruin C, van Woerkom A B and Bakker A F 1992 J. Chem. Phys. 96 565
26 Haye M J and Bruin C 1994 J. Chem. Phys. 100 556
27 Rekhviashvili S Sh, Kishtikova E V, Karmokova R Yu and Karmokov A M 2007 Tech. Phys. Lett. 33 48
28 Cui S W, Zhu R Z, Wei J A, Wang X S, Yang H X, Xu S H and Sun Z W 2015 Acta Phys. Sin. 64 116802 (in Chinese)
29 Cui S W, Wei J A, Xu S H, Sun Z W and Zhu R Z 2015 J. Comput. Theor. Nanos 12 189
30 Thompson S M, Gubbins K E, Walton J P R B, Chantry R A R and Rowlinson J S 1984 J. Chem. Phys. 81 530
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!