Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014703    DOI: 10.1088/1674-1056/24/1/014703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term

Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高)
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  In this study, we investigate the pseudopotential multiphase model of lattice Boltzmann method (LBM) and incorporate a surface tension term to implement the particle interaction force. By using the Carnahan-Starling (CS) equation of state (EOS) with a proper critical pressure-density ratio, a density ratio over 160000 is obtained with satisfactory numerical stability. The added surface tension term offers a flexible choice to adjust the surface tension strength. Numerical tests of the Laplace rule are conducted, proving that smaller spurious velocity and better numerical stability can be acquired as the surface tension becomes stronger. Moreover, by wall adhesion and heterogeneous cavitation tests, the surface tension term shows its practical application in dealing with problems in which the surface tension plays an important role.
Keywords:  lattice Boltzmann method      surface tension      pseudopotential model      numerical stability  
Received:  14 May 2014      Revised:  18 August 2014      Accepted manuscript online: 
PACS:  47.61.Jd (Multiphase flows)  
  68.03.Cd (Surface tension and related phenomena)  
  47.55.D- (Drops and bubbles)  
  47.50.-d (Non-Newtonian fluid flows)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 51109178) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20116102120009).
Corresponding Authors:  Song Bao-Wei     E-mail:  songbaowei@nwpu.edu.cn

Cite this article: 

Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高) Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term 2015 Chin. Phys. B 24 014703

[1] Shan X and Chen H 1993 Phys. Rev. E 47 1815
[2] Michael R S, Osborn W R and Yeomans J M 1995 Phys. Rev. Lett. 75 830
[3] Haihu L, Albert J V, Qinjun K and Charles W 2013 Transp Porous Med. 99 555
[4] Haihu L and Yonghao Z 2010 J. Comput. Phys. 229 9166
[5] Haihu L and Albert J V 2012 Phys. Rev. E 85 046309
[6] Peng Y and Schaefer L 2006 Phys. Fluids 18 042101
[7] Peng Y 2005 Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics (Ph.D. Dissertation) (Pennsylvania: University of Pittsburgh)
[8] Kupershtokh A L, Medvedev D A and Karpov D I 2009 Comput. Math. Appl. 58 965
[9] Kupershtokh A L 2010 Comput. Math. Appl. 59 2236
[10] Kupershtokh A L 2011 Comput. Math. Appl. 61 3537
[11] Liu M L, Yu Z, Wang T F, Wang J F and Fan L S 2010 Chemical Engineering Science 65 5615
[12] He X, Chen S and Zhang R 1999 J Comput Phys 152 642
[13] Shan X and Doolen G D 1995 J. Stat. Phys. 81 379
[14] Huang H, Krafczyk M and Lu X 2011 Phys. Rev. E 84 046710
[15] Chen X, Zhong C and Yuan X 2011 Comput. Math. Appl. 61 3577
[16] Elhassan A E Craven R J B and de Reuck K M 1997 Fluid Phase Equilibria 130 167
[17] Benzi R, Biferale L, Sbragaglia M Succi S and Toschi F 2006 Math. Comput. Sim. 72 84
[18] Sukop M and Or D 2005 Phys. Rev. E 71 046703
[19] Zhong M, Zhong C W and Bai C R 2012 ACSA 1 73
[20] Zhang M, Zhou C Y, Shams I and Liu J Q 2009 Acta Phys. Sin. 58 8406 (in Chinese)
[21] Or D and Tuller M 2002 Water Resour. Res. 38 1601
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[6] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[7] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[8] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[9] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[10] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[11] Approximate expression of Young's equation and molecular dynamics simulation for its applicability
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Wei-Wei Liu(刘伟伟), Ru-Zeng Zhu(朱如曾), Qian Ping(钱萍). Chin. Phys. B, 2019, 28(1): 016801.
[12] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[13] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[14] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[15] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
No Suggested Reading articles found!