Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066801    DOI: 10.1088/1674-1056/25/6/066801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanism of contact angle saturation and an energy-based model for electrowetting

Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚)
College of Optoelectronic Engineering, Center of Optofluidic Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  

Electrowetting, as a well-known approach to increasing droplet wettability on a solid surface by electrical bias, has broad applications. However, it is limited by contact angle saturation at large voltage. Although several debated hypotheses have been proposed to describe it, the physical origin of contact angle saturation still remains obscure. In this work, the physical factors responsible for the onset of contact angle saturation are explored, and the correlated theoretical models are established to characterize electrowetting behavior. Combination of the proper 3-phase system employed succeeds in dropping the saturating contact angle below 25°, and validates that the contact angle saturation is not a result of device-related imperfection.

Keywords:  electrowetting      contact angle      saturation  
Received:  28 October 2015      Revised:  18 January 2016      Accepted manuscript online: 
PACS:  68.08.Bc (Wetting)  
  68.08.-p (Liquid-solid interfaces)  
  68.03.Cd (Surface tension and related phenomena)  
Fund: 

Project supported by the Fund from the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0402).

Corresponding Authors:  Zhong-Cheng Liang     E-mail:  zcliang@njupt.edu.cn

Cite this article: 

Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚) Mechanism of contact angle saturation and an energy-based model for electrowetting 2016 Chin. Phys. B 25 066801

[1] Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M and Pamula V 2008 Lab on a Chip 8 2091
[2] Lazar I M and Kabulski J L 2013 Lab on a Chip 13 2055
[3] Mugele F and Baret J C 2005 J. Phys.: Condens. Matter 17 R705
[4] Peng R L, Chen J B and Zhuang S L 2008 J. Opt. Soc. Am. A 25 2644
[5] Berge B and Peseux J 2000 Eur. Phys. J. E 3 159
[6] Hayes R A and Feenstra B J 2003 Nature 425 383
[7] Hagedon M, Yang S, Russell A and Heikenfeld J 2012 Nat. Commun. 3 1173
[8] Yuan Q Z and Zhao Y P 2010 Phys. Rev. Lett. 104 246101
[9] Mugele F 2009 Soft Matter 5 3377
[10] Papathanasiou A G, Papaioannou A T and Boudouvis A G 2008 J. Appl. Phys. 103 034901
[11] Drygiannakis A I, Papathanasiou A G and Boudouvis A G 2008 Langmuir 25 147
[12] Quinn A, Sedev R and Ralston J 2005 J. Phys. Chem. B 109 6268
[13] Kedzierski J T, Batra R, Berry S, Guha I and Abedian B 2013 J. Appl. Phys. 114 024901
[14] Vallet M, Vallade M and Berge B 1999 Eur. Phys. J. B 11 583
[15] Yuan Q Z and Zhao Y P 2015 Nanoscale 7 2561
[16] Gupta R, Sheth D, Boone T, Sevilla A and Frechette J 2011 Langmuir 27 14923
[17] Buehrle J, Herminghaus S and Mugele F 2003 Phys. Rev. Lett. 91 086101
[18] Mugele F and Buehrle J 2007 J. Phys.: Condens. Matter 19 375112
[19] Verheijen H J J and Prins M W J 1999 Langmuir 15 6616
[20] Oprins H, Vandevelde B and Baelmans M 2012 Micromachines 3 150
[21] Ren H, Fair R B, Pollack M G and Shaughnessy E J 2002 Sensors and Actuators B: Chemical 87 201
[22] Brochard F 1989 Langmuir 5 432
[23] Nelson W C and Kim C J 2012 J. Adh. Sci. Technol. 26 1747
[24] Li F and Mugele F 2008 Appl. Phys. Lett. 92 244108
[25] Liu J, Wang M, Chen S and Robbins M O 2012 Phys. Rev. Lett. 108 216101
[26] Chevalliot S, Kuiper S and Heikenfeld J 2012 J. Adh. Sci. Technol. 26 1909
[1] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[2] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[3] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
[4] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[5] Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature
Mengyang Qu(屈孟杨), Bo Zhou(周波), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(10): 106804.
[6] Wetting failure condition on rough surfaces
Feng-Chao Yang(杨冯超), Xiao-Peng Chen(陈效鹏). Chin. Phys. B, 2019, 28(4): 044701.
[7] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[8] A review of recent theoretical and computational studies on pinned surface nanobubbles
Yawei Liu(刘亚伟), Xianren Zhang(张现仁). Chin. Phys. B, 2018, 27(1): 014401.
[9] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[10] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[11] Interfacial nanobubbles produced by long-time preserved cold water
Li-Min Zhou(周利民), Shuo Wang(王硕), Jie Qiu(邱杰), Lei Wang(王磊), Xing-Ya Wang(王兴亚), Bin Li(李宾), Li-Juan Zhang(张立娟), Jun Hu(胡钧). Chin. Phys. B, 2017, 26(10): 106803.
[12] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
[13] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[14] Contact angle hysteresis in electrowetting on dielectric
Zhao Rui (赵瑞), Liu Qi-Chao (刘启超), Wang Ping (王评), Liang Zhong-Cheng (梁忠诚). Chin. Phys. B, 2015, 24(8): 086801.
[15] Boron implanted emitter for n-type silicon solar cell
Liang Peng (梁鹏), Han Pei-De (韩培德), Fan Yu-Jie (范玉洁), Xing Yu-Peng (邢宇鹏). Chin. Phys. B, 2015, 24(3): 038801.
No Suggested Reading articles found!