Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046801    DOI: 10.1088/1674-1056/26/4/046801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Icephobic performance on the aluminum foil-based micro-/nanostructured surface

Yu Chen(陈宇)1, Guicheng Liu(刘桂成)2, Lei Jiang(姜磊)3, Ji Young Kim(金志永)2, Feng Ye(叶锋)4, Joong Kee Lee(李重基)2, Lei Wang(王磊)5, Bo Wang(王波)1
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2 Center for Energy Convergence Research, Green City Research Institute, Korea Institute of Science and Technology(KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea;
3 Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
4 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
5 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects. In order to expand the serviceable range, people have investigated various superhydrophobic materials. The simple and easy preparation method has become the focus for superhydrophobic materials. In this paper, we present a program for preparing a rough surface on an aluminum foil, which possesses excellent hydrophobic properties after the treatment with low surface energy materials at high vacuum. The resulting contact angle is larger than 160°, and the droplet cannot freeze on the surface above -10℃. Meanwhile, the modified aluminum foil with the thickness of less than 100 μm can be used as an ideal flexible applied material for superhydrophobicity/anti-icing.
Keywords:  aluminum foil      micro-nanostructure      superhdrophobicity      anti-icing      flexibility  
Received:  05 December 2016      Revised:  10 January 2017      Accepted manuscript online: 
PACS:  68.03.Cd (Surface tension and related phenomena)  
  68.08.-p (Liquid-solid interfaces)  
  68.35.Ct (Interface structure and roughness)  
  68.35.Np (Adhesion)  
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 2016M590137), the National Natural Science Foundation of China (Grant No. 21476246), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016047), the KIST Institutional Program (Grant No. 2E26291), and Research Grants of NRF funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (Grant No. NRF-2015H1D3A1036078).
Corresponding Authors:  Guicheng Liu, Lei Wang, Bo Wang     E-mail:  log67@163.com;silu861004@163.com;wangbo@bjut.edu.cn

Cite this article: 

Yu Chen(陈宇), Guicheng Liu(刘桂成), Lei Jiang(姜磊), Ji Young Kim(金志永), Feng Ye(叶锋), Joong Kee Lee(李重基), Lei Wang(王磊), Bo Wang(王波) Icephobic performance on the aluminum foil-based micro-/nanostructured surface 2017 Chin. Phys. B 26 046801

[1] Li S M, Zhou S Z and Liu J H 2009 Acta Phys. Chim. Sin. 25 2581
[2] Wang P W, Liu M J and Jiang L 2016 Acta Phys. Sin. 65 186801 (in Chinese)
[3] Hao C, Liu Y, Chen X, Li J, Zhang M, Zhao Y and Wang Z 2016 Small 12 1825
[4] Yu S, Guo Z and Liu W 2014 Chem. Commun. 51 1775
[5] Wang L, Gao C, Hou Y, Zheng Y and Jiang L 2016 J. Mater. Chem. A 4 18289
[6] Shi W, Wang L, Guo Z and Zheng Y 2015 Adv. Mater. Interfaces 2 1500352
[7] Frysali M A, Papoutsakis L, Kenanakis G and Anastasiadis S H 2015 J. Phys. Chem. C 119 25401
[8] Zhang W, Lin G, Li J, Xue H, Luo Y and Gao X 2015 Adv. Mater. Interfaces 2 1500238
[9] Baji A, Abtahi M and Ramakrishna S 2014 J. Nanosci. Nanotechnol. 14 4781
[10] Lu X, Wu Y, Cai H, Qu X, Ni L, Teng C, Zhu Y and Jiang L 2015 RSC Adv. 5 54175
[11] Li H, Yu S and Han X 2015 New J. Chem. 39 4860
[12] Xu Q, Li J, Tian J, Zhu J and Gao X 2014 ACS Appl. Mater. Interfaces 6 8976
[13] Li J, Luo Y, Zhu J, Li H and Gao X 2015 ACS Appl. Mater. Interfaces 7 26391
[14] Liu G, Li X, Wang M, Wang M, Kim J Y, Woo J Y, Wang X and Lee J K 2016 Energ. Convers. Manag. 126 697
[15] Liu G C, Wang Y T, Zhang J, Wang M, Zhang C J and Wang X D 2013 J. Chem. Technol. Biot. 88 818
[16] Wang Y, Liu G, Wang M, Liu G, Li J and Wang X 2013 Int. J. Hydrogen Energ. 38 9000
[17] Liu G, Ding X, Zhou H, Chen M, Wang M, Zhao Z, Yin Z and Wang X 2015 Appl. Energ. 147 396
[18] Tian J, Zhang Y, Zhu J, Yang Z and Gao X 2014 ChemPhysChem 15 858
[19] Tian J, Zhu J, Guo H Y, Li J, Feng X Q and Gao X 2014 J. Phys. Chem. Lett. 5 2084
[20] Li X, Liu G, Shi M, Zou D, Wang C and Zheng J 2016 Sep. Purif. Technol. 165 154
[21] Zhao Z, Liu G, Li B, Guo L, Fei C, Wang Y, Lv L, Liu X, Tian J and Cao G 2015 J. Mater. Chem. A 3 11320
[22] Li X, Liu G, Shi M, Li J, Li J, Guo C, Lee J K and Zheng J 2016 Electrochim. Acta 218 318
[23] Jiang T, Guo Z and Liu W 2015 J. Mater. Chem. A 3 1811
[24] Wang L, Yuan B, Lu J, Tan S, Liu F, Yu L, He Z and Liu J 2016 Adv. Mater. 28 4065
[25] Yang C Y, Tsai Y L, Yang C Y, Sung C K, Yu P and Kuo H C 2014 Appl. Phys. Express 7 087001
[26] Wang L, Zhang M, Gao C and Zheng Y 2016 Adv. Mater. Interfaces 3 1600145
[27] Zhao R and Liang Z C 2016 Chin. Phys. B 25 066801
[28] Cao S Q, Wei G H and Chen J Z Y 2015 Chin. Phys. B 24 098702
[29] Li G, He D, Lin Y, Chen Z, Liu Y and Peng X 2016 Polym. Adv. Technol. 27 1438
[30] Huovinen E, Takkunen L, Suvanto M and Pakkanen T A 2014 J. Micromech. Microeng. 24 055017
[31] Pereira P M M, Moita A S, Monteiro G A and Prazeres D M F 2014 J. Bionic Eng. 11 346
[32] Ding X, Zhou H, Liu G, Yin Z, Jiang Y and Wang X 2015 J. Alloys Compd. 632 147
[33] Zhou H, Ding X, Liu G, Jiang Y, Yin Z and Wang X 2015 Electrochim. Acta 152 274
[34] Zhou H, Ding X, Liu G, Gao Z, Xu G and Wang X 2015 RSC Adv. 5 108007
[35] Li J, Zhang W, Luo Y, Zhu J and Gao X 2015 ACS Appl. Mater. Interfaces 7 18206
[36] Zhao Y, Luo Y, Li J, Yin F, Zhu J and Gao X 2015 ACS Appl. Mater. Interfaces 7 11079
[37] Wang L, Wen M, Zhang M, Jiang L and Zheng Y 2014 J. Mater. Chem. A 2 3312
[38] Zhang B, Lei Q, Wang Z and Zhang X 2016 Langmuir 32 346
[39] Jie H, Xu Q, Wei L and Min Y 2016 Corros. Sci. 102 251
[40] Cho Y S, Moon J W, Lim D C and Kim Y D 2013 Korean J. Chem. Eng. 30 1142
[41] Liu G, Peng M, Song W, Wang H and Zou D 2015 Nano Energy 11 341
[42] Song W, Wang H, Liu G, Peng M and Zou D 2016 Nano Energy 19 1
[43] Liu G, Gao X, Wang H, Kim A Y, Zhao Z, Lee J K and Zou D 2016 J. Mater. Chem. A 4 5925
[1] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[2] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[3] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[4] Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution
Di Tang(唐迪), Hai Zhu(朱海), Wei Yuan(袁巍), Zhongyong Fan(范忠勇), Mingxia Lei(雷鸣霞). Chin. Phys. B, 2019, 28(7): 074703.
[5] Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores
Xin Tong(童鑫), Rui Hu(胡蕊), Xiaoqing Li(李晓晴), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(11): 118705.
[6] Flexibility of nucleic acids: From DNA to RNA
Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2016, 25(1): 018703.
[7] Structural modeling of proteins by integrating small-angle x-ray scattering data
Zhang Yong-Hui (张泳辉), Peng Jun-Hui (彭俊辉), Zhang Zhi-Yong (张志勇). Chin. Phys. B, 2015, 24(12): 126101.
[8] Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer
Chen Shu-Fen (陈淑芬), Guo Xu (郭旭), Wu Qiang (邬强), Zhao Xiao-Fei (赵晓飞), Shao Ming (邵茗), Huang Wei (黄维). Chin. Phys. B, 2013, 22(12): 128506.
[9] The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme
Qi Jian-Xun(齐建勋) and Jiang Fan(江凡). Chin. Phys. B, 2011, 20(5): 058701.
[10] Symmetric linear potential and imperfect Brownian ratchet in molecular motor function
Li Fang-Zhen (李防震), Hu Kuang-Hu (胡匡祜), Su Wan-Fang (苏万芳), Chen Yi-Chen (陈袆辰). Chin. Phys. B, 2005, 14(9): 1745-1754.
No Suggested Reading articles found!