ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Classic analogue of Autler-Townes-splitting transparency using a single magneto-optical ring resonator |
Liting Wu(吴利婷)1,†, Wenkang Cao(曹文康)2, and Haolin Jiang(蒋昊林)3 |
1 School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China; 2 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China; 3 School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
|
|
Abstract We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window, which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler-Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.
|
Received: 26 February 2023
Revised: 21 May 2023
Accepted manuscript online: 30 May 2023
|
PACS:
|
42.15.Eq
|
(Optical system design)
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12104227), the Scientific Research Foundation of Nanjing Institute of Technology (Grant No. YKJ202021), and the Guizhou Provincial Science and Technology Projects (Grant No. ZK[2022] general 035). |
Corresponding Authors:
Liting Wu
E-mail: njltwu@hotmail.com
|
Cite this article:
Liting Wu(吴利婷), Wenkang Cao(曹文康), and Haolin Jiang(蒋昊林) Classic analogue of Autler-Townes-splitting transparency using a single magneto-optical ring resonator 2023 Chin. Phys. B 32 104201
|
[1] Boller K J, Imamoǧlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593 [2] Budker D, Kimball D, Rochester S and Yashchuk V 1999 Phys. Rev. Lett. 83 1767 [3] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594 [4] Lukin M and Imamoǧlu A 2001 Nature 413 273 [5] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490 [6] Autler S H and Townes C H 1955 Phys. Rev. 100 703 [7] Sillanpää M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W, Paraoanu G S and Hakonen P J 2009 Phys. Rev. Lett. 103 193601 [8] Zhang Y, Nie Z, Wang Z, Li C, Wen F and Xiao M 2010 Opt. Lett. 35 3420 [9] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104 [10] Saglamyurek E, Hrushevskyi T, Rastogi A, Heshami K and LeBlanc L J 2018 Nat. Photon. 12 774 [11] Sohn D B, örsel O E and Bahl G 2021 Nat. Photon. 15 822 [12] Asadpour S H, Hamedi H R and Paspalakis E 2022 Photonics 9 954 [13] Wu H, Ruan Y, Li Z, Dong M X, Cai M, Tang J, Tang L, Zhang H, Xiao M and Xia K 2022 Laser Photon. Rev. 16 2100708 [14] Little B E, Laine J P and Chu S T 1997 Opt. Lett. 22 4 [15] Naweed A, Farca G, Shopova S I and Rosenberger A 2005 Phys. Rev. A 71 043804 [16] Zhu J, Özdemir S K, Xiao Y F, Li L, He L, Chen D R and Yang L 2010 Nat. Photon. 4 46 [17] Zhu J, Özdemir S K, He L, Chen D R and Yang L 2011 Opt. Express 19 16195 [18] Campanella C, Giorgini A, Avino S, Malara P, Zullo R, Gagliardi G and De Natale P 2013 Opt. Express 21 29435 [19] Campanella C E, Mastronardi L, De Leonardis F, Malara P, Gagliardi G and Passaro V M 2014 Opt. Express 22 25371 [20] Peng B, özdemir S K, Chen W, Nori F and Yang L 2014 Nat. Commun. 5 5082 [21] Wei B and Jian S 2017 J. Opt. 19 115001 [22] Zhi Y, Yu X C, Gong Q, Yang L and Xiao Y F 2017 Adv. Mater. 29 1604920 [23] Yu L, Chen L, Zhang W, Zhang Y, Zhang Y, Kong L, Yan T and Li J 2019 J. Lightwave Technol. 37 3620 [24] Ma K, Zhang Y, Su H, Yi G, Yu C and Wang J 2020 Opt. Lett. 45 754 [25] Dyshlyuk A V, Eryusheva U A and Vitrik O B 2020 J. Lightwave Technol. 38 6918 [26] Li W, Li J, Yu L, Feng Y, Yao Y, Sun Y, Zou Y and Xu X 2023 APL Photon. 8 016102 [27] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711 [28] Heebner J E, Boyd R W and Park Q H 2002 Phys. Rev. A 65 036619 [29] Heebner J E, Boyd R W and Park Q H 2002 J. Opt. Soc. Am. B 19 722 [30] Poon J K, Scheuer J, Mookherjea S, Paloczi G T, Huang Y and Yariv A 2004 Opt. Express 12 90 [31] Li B B, Xiao Y F, Zou C L, Liu Y C, Jiang X F, Chen Y L, Li Y and Gong Q 2011 Appl. Phys. Lett. 98 021116 [32] Rosenberger A T 2013 Adv. Slow Fast Light VI 8636 863602 [33] Wang J, Fung K H, Dong H Y and Fang N X 2011 Phys. Rev. B 84 235122 [34] Yang M, Li T F, Sheng Q W, Guo T J, Guo Q H, Cui H X and Chen J 2013 Opt. Express 21 25035 [35] Guo T J, Li T F, Yang M, Cui H X, Guo Q H, Cao X W and Chen J 2014 Opt. Express 22 537 [36] Li Z, Wu R X, Li Q B and Poo Y 2015 Appl. Opt. 54 1267 [37] Guo R P, Wu L T, Yang M, Guo T J, Cui H X, Cao X W and Chen J 2015 Phys. Rev. A 91 023808 [38] Nezhad V F, You C and Veronis G 2021 Chin. Opt. Lett. 19 083602 [39] Chen J, Pan J, Zheng Y, Liang W and Li Z Y 2022 Chin. Opt. Lett. 20 053901 [40] Khurgin J B 2006 Appl. Phys. Lett. 89 251115 [41] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772 [42] Mu Q, Fan F, Chen S, Xu S, Xiong C, Zhang X, Wang X and Chang S 2019 Photon. Res. 7 325 [43] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C 2011 Nat. Photon. 5 758 [44] Yuan S, Chen L, Wang Z, Deng W, Hou Z, Zhang C, Yu Y, Wu X and Zhang X 2021 Nat. Commun. 12 5570 [45] Shayegan K J, Zhao B, Kim Y, Fan S and Atwater H A 2022 Sci. Adv. 8 eabm4308 [46] Peng B, özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394 [47] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524 [48] Khurgin J B 2010 Adv. Opt. Photon. 2 287 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|