Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104201    DOI: 10.1088/1674-1056/acd9c1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Classic analogue of Autler-Townes-splitting transparency using a single magneto-optical ring resonator

Liting Wu(吴利婷)1,†, Wenkang Cao(曹文康)2, and Haolin Jiang(蒋昊林)3
1 School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China;
3 School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window, which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler-Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.
Keywords:  magneto-optic effect      dynamic tunable      single optical ring resonator  
Received:  26 February 2023      Revised:  21 May 2023      Accepted manuscript online:  30 May 2023
PACS:  42.15.Eq (Optical system design)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  78.20.Ls (Magneto-optical effects)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12104227), the Scientific Research Foundation of Nanjing Institute of Technology (Grant No. YKJ202021), and the Guizhou Provincial Science and Technology Projects (Grant No. ZK[2022] general 035).
Corresponding Authors:  Liting Wu     E-mail:  njltwu@hotmail.com

Cite this article: 

Liting Wu(吴利婷), Wenkang Cao(曹文康), and Haolin Jiang(蒋昊林) Classic analogue of Autler-Townes-splitting transparency using a single magneto-optical ring resonator 2023 Chin. Phys. B 32 104201

[1] Boller K J, Imamoǧlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[2] Budker D, Kimball D, Rochester S and Yashchuk V 1999 Phys. Rev. Lett. 83 1767
[3] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[4] Lukin M and Imamoǧlu A 2001 Nature 413 273
[5] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[6] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[7] Sillanpää M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W, Paraoanu G S and Hakonen P J 2009 Phys. Rev. Lett. 103 193601
[8] Zhang Y, Nie Z, Wang Z, Li C, Wen F and Xiao M 2010 Opt. Lett. 35 3420
[9] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104
[10] Saglamyurek E, Hrushevskyi T, Rastogi A, Heshami K and LeBlanc L J 2018 Nat. Photon. 12 774
[11] Sohn D B, örsel O E and Bahl G 2021 Nat. Photon. 15 822
[12] Asadpour S H, Hamedi H R and Paspalakis E 2022 Photonics 9 954
[13] Wu H, Ruan Y, Li Z, Dong M X, Cai M, Tang J, Tang L, Zhang H, Xiao M and Xia K 2022 Laser Photon. Rev. 16 2100708
[14] Little B E, Laine J P and Chu S T 1997 Opt. Lett. 22 4
[15] Naweed A, Farca G, Shopova S I and Rosenberger A 2005 Phys. Rev. A 71 043804
[16] Zhu J, Özdemir S K, Xiao Y F, Li L, He L, Chen D R and Yang L 2010 Nat. Photon. 4 46
[17] Zhu J, Özdemir S K, He L, Chen D R and Yang L 2011 Opt. Express 19 16195
[18] Campanella C, Giorgini A, Avino S, Malara P, Zullo R, Gagliardi G and De Natale P 2013 Opt. Express 21 29435
[19] Campanella C E, Mastronardi L, De Leonardis F, Malara P, Gagliardi G and Passaro V M 2014 Opt. Express 22 25371
[20] Peng B, özdemir S K, Chen W, Nori F and Yang L 2014 Nat. Commun. 5 5082
[21] Wei B and Jian S 2017 J. Opt. 19 115001
[22] Zhi Y, Yu X C, Gong Q, Yang L and Xiao Y F 2017 Adv. Mater. 29 1604920
[23] Yu L, Chen L, Zhang W, Zhang Y, Zhang Y, Kong L, Yan T and Li J 2019 J. Lightwave Technol. 37 3620
[24] Ma K, Zhang Y, Su H, Yi G, Yu C and Wang J 2020 Opt. Lett. 45 754
[25] Dyshlyuk A V, Eryusheva U A and Vitrik O B 2020 J. Lightwave Technol. 38 6918
[26] Li W, Li J, Yu L, Feng Y, Yao Y, Sun Y, Zou Y and Xu X 2023 APL Photon. 8 016102
[27] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711
[28] Heebner J E, Boyd R W and Park Q H 2002 Phys. Rev. A 65 036619
[29] Heebner J E, Boyd R W and Park Q H 2002 J. Opt. Soc. Am. B 19 722
[30] Poon J K, Scheuer J, Mookherjea S, Paloczi G T, Huang Y and Yariv A 2004 Opt. Express 12 90
[31] Li B B, Xiao Y F, Zou C L, Liu Y C, Jiang X F, Chen Y L, Li Y and Gong Q 2011 Appl. Phys. Lett. 98 021116
[32] Rosenberger A T 2013 Adv. Slow Fast Light VI 8636 863602
[33] Wang J, Fung K H, Dong H Y and Fang N X 2011 Phys. Rev. B 84 235122
[34] Yang M, Li T F, Sheng Q W, Guo T J, Guo Q H, Cui H X and Chen J 2013 Opt. Express 21 25035
[35] Guo T J, Li T F, Yang M, Cui H X, Guo Q H, Cao X W and Chen J 2014 Opt. Express 22 537
[36] Li Z, Wu R X, Li Q B and Poo Y 2015 Appl. Opt. 54 1267
[37] Guo R P, Wu L T, Yang M, Guo T J, Cui H X, Cao X W and Chen J 2015 Phys. Rev. A 91 023808
[38] Nezhad V F, You C and Veronis G 2021 Chin. Opt. Lett. 19 083602
[39] Chen J, Pan J, Zheng Y, Liang W and Li Z Y 2022 Chin. Opt. Lett. 20 053901
[40] Khurgin J B 2006 Appl. Phys. Lett. 89 251115
[41] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772
[42] Mu Q, Fan F, Chen S, Xu S, Xiong C, Zhang X, Wang X and Chang S 2019 Photon. Res. 7 325
[43] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C 2011 Nat. Photon. 5 758
[44] Yuan S, Chen L, Wang Z, Deng W, Hou Z, Zhang C, Yu Y, Wu X and Zhang X 2021 Nat. Commun. 12 5570
[45] Shayegan K J, Zhao B, Kim Y, Fan S and Atwater H A 2022 Sci. Adv. 8 eabm4308
[46] Peng B, özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[47] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
[48] Khurgin J B 2010 Adv. Opt. Photon. 2 287
[1] Engineered photonic spin Hall effect of Gaussian beam in antisymmetric parity-time metamaterials
Lu-Yao Liu(刘露遥), Zhen-Xiao Feng(冯振校), Dong-Mei Deng(邓冬梅), and Guang-Hui Wang(王光辉). Chin. Phys. B, 2023, 32(9): 094201.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[4] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[5] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[6] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[7] Digital synthesis of programmable photonic integrated circuits
Juan Zhang(张娟), Zhengyong Ji(计正勇), Yipeng Ding(丁一鹏), and Yang Wang(王阳). Chin. Phys. B, 2022, 31(2): 024208.
[8] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[9] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[10] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[11] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[12] Narrow-band high-transmittance birefringent filter and its application in wide color gamut display
Chi Zhang(张弛), Rui Niu(牛瑞), Wenjuan Li(李文娟), Xiaoshuai Li(李小帅), Hongmei Ma(马红梅), and Yubao Sun(孙玉宝). Chin. Phys. B, 2021, 30(5): 054207.
[13] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[14] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[15] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
No Suggested Reading articles found!