|
|
High efficient Raman sideband cooling and strong three-body recombination of atoms |
Yuqing Li(李玉清)1,2, Zhennan Liu(刘震南)1, Yunfei Wang(王云飞)1, Jizhou Wu(武寄洲)1,2,†, Wenliang Liu(刘文良)1,2, Yongming Fu(付永明)1, Peng Li(李鹏)1, Jie Ma(马杰)1,2, Liantuan Xiao(肖连团)1,2, and Suotang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report a highly efficient three-dimensional degenerated Raman sideband cooling (3D dRSC) that enhances the loading of a magnetically levitated optical dipole trap, and observe the strong atom loss due to the three-body recombination. The 3D dRSC is implemented to obtain 5×107 Cs atoms with the temperature of ~ 480 nK. The cold temperature enables 1.8×107 atoms loaded into a crossed dipole trap with an optimized excessive levitation magnetic gradient. Compared to the loading of atoms from a bare magneto-optical trap or the gray-molasses cooling, there is a significant increase in the number of atoms loaded into the optical dipole trap. We derive for the three-body recombination coefficient of L3 = 7.73×10-25 cm6/s by analyzing the strong atom loss at a large scattering length of 1418 Bohr radius, and discover the transition from the strong three-body loss to the dominant one-body loss. Our result indicates that the lifetime of atoms in the optical dipole trap is finally decided by the one-body loss after the initial strong three-body loss.
|
Received: 28 May 2023
Revised: 22 July 2023
Accepted manuscript online: 01 August 2023
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
03.75.-b
|
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
Fund: Project funded by the National Key Research and Development Program of China (Grant No. 2022YFA1404201), the National Natural Science Foundation of China (Grant Nos. 62020106014, 92165106, 62175140, 12074234, and 11974331), and the Applied Basic Research Project of Shanxi Province, China (Grant No. 202203021224001). |
Corresponding Authors:
Jizhou Wu
E-mail: wujz@sxu.edu.cn
|
Cite this article:
Yuqing Li(李玉清), Zhennan Liu(刘震南), Yunfei Wang(王云飞), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Yongming Fu(付永明), Peng Li(李鹏), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂) High efficient Raman sideband cooling and strong three-body recombination of atoms 2023 Chin. Phys. B 32 103701
|
[1] Bloch I, Dalibard J and Nascimbéne S 2012 Nat. Phys. 8 267 [2] Clark L W, Gaj A, Feng L and Chin C 2017 Nature 551 356 [3] Li J R, Lee J, Huang W J, Burchesky S, Shteynas B, Top F C, Jamison A O and Ketterle W 2017 Nature 543 91 [4] Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys. 91 015005 [5] Li Y Q, Zhang J H, Wang Y F, Du H Y, Wu J Z, Liu W L, Mei F, Ma J, Xiao L T and Jia S T 2022 Light. Sci. Appl. 11 13 [6] Wang Y F, Zhang J H, Li Y Q, Wu J Z, Liu W L, Mei F, Hu Y, Xiao L T, Ma J, Chin C and Jia S T 2022 Phys. Rev. Lett. 129 103401 [7] Wang Y F, Du H Y, Li Y Q, Mei F, Hu Y, Xiao L T, Ma J and Jia S T 2023 Light. Sci. Appl. 12 50 [8] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M and Roati G 2014 Phys. Rev. A 90 043408 [9] Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S J, Parker C V, Khaykovich L, Salomon C and Chevy F 2015 Phys. Rev. A 91 023426 [10] Satter C L, Tan S and Dieckmann K 2018 Phys. Rev. A 98 023422 [11] Kim K, Huh S J, Kwon K and Choi J 2019 Phys. Rev. A 99 053604 [12] Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G and Ferrari G 2016 Phys. Rev. A 93 023421 [13] Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H and Zhang J 2018 Chin. Phys. Lett. 35 123701 [14] Salomon G, Fouché L, Lepoutre S, Aspect A and Bourdel T 2014 Phys. Rev. A 90 033405 [15] Nath D, Easwaran R K, Rajalakshmi G and Unnikrishnan C S 2013 Phys. Rev. A 88 053407 [16] Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W and Kuhr S 2017 J. Phys. B 50 095002 [17] Chen H Z, Yao X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Chen Y A and Pan J W 2016 Phys. Rev. A 94 033408 [18] Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C and Minardi F 2018 Sci. Rep. 8 1301 [19] Hsiao Y F, Lin Y J and Chen Y C 2018 Phys. Rev. A 98 033419 [20] Kerman A J, Vuletić V, Chin C and Chu S 2000 Phys. Rev. Lett. 84 439 [21] Treutlein P, Chung K Y and Chu S 2001 Phys. Rev. A 63 051401 [22] Weber T, Herbig J, Mark M, Nägerl H and Grimm R 2003 Science 299 232 [23] Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl H and Grimm R 2004 Appl. Phys. B 79 1013 [24] Hung C L, Zhang X B, Gemelke N and Chin C 2008 Phys. Rev. A 78 011604 [25] Wang Y F, Li Y Q, Wu J Z, Liu W L, Hu J Z, Ma J, Xiao L T and Jia S T 2021 Opt. Express 29 13960 [26] Gröbner M, Weinmann P, Kirilov E and Nägerl H 2017 Phys. Rev. A 95 033412 [27] Hu J Z, Urvoy A, Vendeiro Z, Crépel V, Chen W L and Vuletić V 2017 Science 358 1078 [28] Solano P, Duan Y H, Chen Y T, Rudelis A, Chin C and Vuletić V 2019 Phys. Rev. Lett. 123 173401 [29] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95 [30] Shiddiq M, Ahmed E M, Havey M D and Sukenik C I 2008 Phys. Rev. A 77 045401 [31] Olson A J, Niffenegger R J and Chen Y P 2013 Phys. Rev. A 87 053613 [32] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [33] Fletcher R J, Gaunt A L, Navon N, Smith R P and Hadzibabic Z 2013 Rev. Lett. 111 125303 [34] Makotyn P, Klauss C E, Goldberger D L, Cornell E A and Jin D S 2014 Nat. Phys. 10 116 [35] Eigen C, Glidden J A P, Lopes R, Navon N, Hadzibabic Z and Smith R P 2017 Phys. Rev. Lett. 119 250404 [36] Gao C, Sun M Y, Zhang P and Zhai H 2020 Phys. Rev. Lett. 124 040403 [37] Weber T, Herbig J, Mark M, Nägerl H and Grimm R 2003 Phys. Rev. Lett. 91 123201 [38] Rem B S, Grier A T, Ferrier-Barbut I, Eismann U, Langen T, Navon N, Khaykovich L, Werner F, Petrov D S, Chevy F and Salomon C 2013 Phys. Rev. Lett. 110 163202 [39] Eismann U, Khaykovich L, Laurent S, Ferrier-Barbut I, Rem B S, Grier A T, Delehaye M, Chevy F, Salomon C, Ha L and Chin C 2016 Phys. Rev. X 6 021025 [40] Ketterle W, Durfee, D S and Stamper-Kurn D M 1999 in Proc. Int. School of Physics "Enrico Fermi" p. 67 [41] Jenkina D L, McCarron D J, Koppinger M P, Cho H W, Hopkins S A and Cornish S L 2011 Eur. Phys. J. D 65 11 [42] Steck D A 2003 Cesium D line data [43] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H and Grimm R 2006 Nature 440 315 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|