1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract We report a highly efficient three-dimensional degenerated Raman sideband cooling (3D dRSC) that enhances the loading of a magnetically levitated optical dipole trap, and observe the strong atom loss due to the three-body recombination. The 3D dRSC is implemented to obtain 5×107 Cs atoms with the temperature of ~ 480 nK. The cold temperature enables 1.8×107 atoms loaded into a crossed dipole trap with an optimized excessive levitation magnetic gradient. Compared to the loading of atoms from a bare magneto-optical trap or the gray-molasses cooling, there is a significant increase in the number of atoms loaded into the optical dipole trap. We derive for the three-body recombination coefficient of L3 = 7.73×10-25 cm6/s by analyzing the strong atom loss at a large scattering length of 1418 Bohr radius, and discover the transition from the strong three-body loss to the dominant one-body loss. Our result indicates that the lifetime of atoms in the optical dipole trap is finally decided by the one-body loss after the initial strong three-body loss.
Fund: Project funded by the National Key Research and Development Program of China (Grant No. 2022YFA1404201), the National Natural Science Foundation of China (Grant Nos. 62020106014, 92165106, 62175140, 12074234, and 11974331), and the Applied Basic Research Project of Shanxi Province, China (Grant No. 202203021224001).
Yuqing Li(李玉清), Zhennan Liu(刘震南), Yunfei Wang(王云飞), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Yongming Fu(付永明), Peng Li(李鹏), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂) High efficient Raman sideband cooling and strong three-body recombination of atoms 2023 Chin. Phys. B 32 103701
[1] Bloch I, Dalibard J and Nascimbéne S 2012 Nat. Phys.8 267 [2] Clark L W, Gaj A, Feng L and Chin C 2017 Nature551 356 [3] Li J R, Lee J, Huang W J, Burchesky S, Shteynas B, Top F C, Jamison A O and Ketterle W 2017 Nature543 91 [4] Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys.91 015005 [5] Li Y Q, Zhang J H, Wang Y F, Du H Y, Wu J Z, Liu W L, Mei F, Ma J, Xiao L T and Jia S T 2022 Light. Sci. Appl.11 13 [6] Wang Y F, Zhang J H, Li Y Q, Wu J Z, Liu W L, Mei F, Hu Y, Xiao L T, Ma J, Chin C and Jia S T 2022 Phys. Rev. Lett.129 103401 [7] Wang Y F, Du H Y, Li Y Q, Mei F, Hu Y, Xiao L T, Ma J and Jia S T 2023 Light. Sci. Appl.12 50 [8] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M and Roati G 2014 Phys. Rev. A90 043408 [9] Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S J, Parker C V, Khaykovich L, Salomon C and Chevy F 2015 Phys. Rev. A91 023426 [10] Satter C L, Tan S and Dieckmann K 2018 Phys. Rev. A98 023422 [11] Kim K, Huh S J, Kwon K and Choi J 2019 Phys. Rev. A99 053604 [12] Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G and Ferrari G 2016 Phys. Rev. A93 023421 [13] Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H and Zhang J 2018 Chin. Phys. Lett.35 123701 [14] Salomon G, Fouché L, Lepoutre S, Aspect A and Bourdel T 2014 Phys. Rev. A90 033405 [15] Nath D, Easwaran R K, Rajalakshmi G and Unnikrishnan C S 2013 Phys. Rev. A88 053407 [16] Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W and Kuhr S 2017 J. Phys. B50 095002 [17] Chen H Z, Yao X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Chen Y A and Pan J W 2016 Phys. Rev. A94 033408 [18] Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C and Minardi F 2018 Sci. Rep.8 1301 [19] Hsiao Y F, Lin Y J and Chen Y C 2018 Phys. Rev. A98 033419 [20] Kerman A J, Vuletić V, Chin C and Chu S 2000 Phys. Rev. Lett.84 439 [21] Treutlein P, Chung K Y and Chu S 2001 Phys. Rev. A63 051401 [22] Weber T, Herbig J, Mark M, Nägerl H and Grimm R 2003 Science299 232 [23] Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl H and Grimm R 2004 Appl. Phys. B79 1013 [24] Hung C L, Zhang X B, Gemelke N and Chin C 2008 Phys. Rev. A78 011604 [25] Wang Y F, Li Y Q, Wu J Z, Liu W L, Hu J Z, Ma J, Xiao L T and Jia S T 2021 Opt. Express29 13960 [26] Gröbner M, Weinmann P, Kirilov E and Nägerl H 2017 Phys. Rev. A95 033412 [27] Hu J Z, Urvoy A, Vendeiro Z, Crépel V, Chen W L and Vuletić V 2017 Science358 1078 [28] Solano P, Duan Y H, Chen Y T, Rudelis A, Chin C and Vuletić V 2019 Phys. Rev. Lett.123 173401 [29] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys.42 95 [30] Shiddiq M, Ahmed E M, Havey M D and Sukenik C I 2008 Phys. Rev. A77 045401 [31] Olson A J, Niffenegger R J and Chen Y P 2013 Phys. Rev. A87 053613 [32] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys.82 1225 [33] Fletcher R J, Gaunt A L, Navon N, Smith R P and Hadzibabic Z 2013 Rev. Lett.111 125303 [34] Makotyn P, Klauss C E, Goldberger D L, Cornell E A and Jin D S 2014 Nat. Phys.10 116 [35] Eigen C, Glidden J A P, Lopes R, Navon N, Hadzibabic Z and Smith R P 2017 Phys. Rev. Lett.119 250404 [36] Gao C, Sun M Y, Zhang P and Zhai H 2020 Phys. Rev. Lett.124 040403 [37] Weber T, Herbig J, Mark M, Nägerl H and Grimm R 2003 Phys. Rev. Lett.91 123201 [38] Rem B S, Grier A T, Ferrier-Barbut I, Eismann U, Langen T, Navon N, Khaykovich L, Werner F, Petrov D S, Chevy F and Salomon C 2013 Phys. Rev. Lett.110 163202 [39] Eismann U, Khaykovich L, Laurent S, Ferrier-Barbut I, Rem B S, Grier A T, Delehaye M, Chevy F, Salomon C, Ha L and Chin C 2016 Phys. Rev. X6 021025 [40] Ketterle W, Durfee, D S and Stamper-Kurn D M 1999 in Proc. Int. School of Physics "Enrico Fermi" p. 67 [41] Jenkina D L, McCarron D J, Koppinger M P, Cho H W, Hopkins S A and Cornish S L 2011 Eur. Phys. J. D65 11 [42] Steck D A 2003 Cesium D line data [43] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H and Grimm R 2006 Nature440 315
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.