Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104202    DOI: 10.1088/1674-1056/accd5a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Active control of surface plasmon polaritons with phase change materials

Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专)
Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
Abstract  Active control of surface plasmon polaritons (SPPs) is highly desired for nanophotonics. Here we employ a phase change material Ge2Sb2Te5 (GST) to actively manipulate the propagating direction of SPPs at the telecom wavelength. By utilizing the phase transition-induced refractive index change of GST, coupled with interference effects, a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs. Devices based on the nanoantenna pairs are proposed to manipulate SPPs, including the direction tuning of SPP beams, switchable SPP focusing, and switchable cosine-Gauss SPP beam generating. Our design can be employed in compact optical circuits and photonics integration.
Keywords:  surface plasmon polaritons      phase change materials      direction control      non-diffractive  
Received:  24 March 2023      Revised:  11 April 2023      Accepted manuscript online:  17 April 2023
PACS:  42.25.Hz (Interference)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.40.Rw (Metal-insulator-metal structures)  
  78.20.N-  
Corresponding Authors:  Hong Xiang, De-Zhuan Han     E-mail:  xhong@cqu.edu.cn;dzhan@cqu.edu.cn

Cite this article: 

Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专) Active control of surface plasmon polaritons with phase change materials 2023 Chin. Phys. B 32 104202

[1] Stefan A. Maier 2007 Plasmonics: Fundamentals and Applications (New York: Springer) p. 21-24
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Jiang K, Lu M H, Gupta S K and Chen Y F 2017 Appl. Phys. A-Mater. Sci. Process. 123 676
[4] Xu Z J, Li T, Zhang D H, Yan C C, Li D D, Tobing L Y M, Qin F, Wang Y K, Shen X N and Yu T 2014 Appl. Phys. Express 7 052001
[5] Hu C D, Li Z Y, Tong R, Wu X X, Xia Z Z L, Wang L, Li S S, Huang Y Z, Wang S X, Hou B, Chan C T and Wen W J 2018 Phys. Rev. Lett. 121 024301
[6] Wang Z Y, Ai B and Zhang G 2018 Adv. Opt. Mater. 6 1800402
[7] Xiong X and Xiao Y F 2022 Sci. Bull. 67 1205
[8] Ai B, Fan Z W and Wong Z J 2022 Microsyst. Nanoeng. 8 5
[9] Chen J J, Gan F Y, Wang Y J and Li G Z 2018 Adv. Opt. Mater. 6 1701152
[10] F Lopez-Tejeira, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C and Dereux A 2007 Nat. Phys. 3 324
[11] Xu T, Zhao Y H, Gan D C, Wang C T, Du C L and Luo X G 2008 Appl. Phys. Lett. 92 101501
[12] Yang J, Xiao X, Hu C, Zhang W W, Zhou S X and Zhang J S 2014 Nano Lett. 14 704
[13] Liu Y M, Palomba S, Park Y, Zentgraf, T, Yin X B and Zhang X 2012 Nano Lett. 12 4853
[14] Liu T R, Shen Y, Shin W, Zhu Q Z, Fan S H and Jin C J 2014 Nano Lett. 14 3848
[15] Huang X P and Brongersma M L 2013 Nano Lett. 13 5420
[16] Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331
[17] Rodriguez-Fortuno F J, Marino G, Ginzburg P, O'Connor D, Martinez A, Wurtz G A and Zayats A V 2013 Science 340 328
[18] Huang F, Jiang X Q, Yang H N, Li S R and Sun X D 2016 Appl. Phys. B-Lasers Opt. 122 16
[19] Tu Q, Liu J X, Ke S L, Wang B and Lu P X 2020 Plasmonics 15 727
[20] Radko I P, Bozhevolnyi S I and Boltasseva A 2009 Opt. Express 17 7228
[21] Kim H and Lee B 2009 Plasmonics 4 153
[22] Dong Z G, Chu H S, Zhu D, Du W, Akirnov Y A, Goh W P, Wang T, Goh K E J, Troadec C, Nijhuis C A and Yang J K W 2015 ACS Photon. 2 385
[23] Lu H, Zeng C, Zhang Q M, Liu X M, Hossain M M, Reineck P and Gu M 2015 Sci. Rep. 5 8443
[24] Lu H, Gan X T, Mao D and Zhao J L 2017 Photon. Res. 5 162
[25] Bao Y J, Zu S, Zhang Y F and Fang Z Y 2015 ACS Photon. 2 1135
[26] Wuttig M, Bhaskaran H and Taubner T 2017 Nat. Photon. 11 465
[27] Jiang N N, Zhuo X L and Wang J F 2018 Chem. Rev. 118 3054
[28] Muramoto K, Takahashi Y, Terakado N, Yamazaki Y, Suzuki S and Fujiwara T 2018 Sci. Rep. 8 2275
[29] Zhou X, Gu D E, Li Y T, Qin H X, Jiang Y D and Xu J 2019 Nanoscale 11 22070
[30] Wang S C, Owusu K A, Mai L Q, Ke Y J, ZhouY, Hu P, Magdassi S and Long Y 2018 Appl. Energy 211 200
[31] Meng Y, Behera J K, Ke, Y J, Chew L, Wang Y, Long Y and Simpson R E 2018 Appl. Phys. Lett. 113 071901
[32] Chen X Y, Zhang S J, Liu K, Li H Y, Xu Y H, Chen J J, Lu Y C, Wang Q W, Feng X, Wang K M, Liu Z R, Cao T and Tian Z 2022 ACS Photon. 9 1638
[33] Rude M, Simpson R E, Quidant R, Pruneri V and Renger J 2015 ACS Photon. 2 669
[34] Jeong H D, Hwang C Y and Lee S Y 2018 Jpn. J. Appl. Phys. 57 040307
[35] Kim S J, Yun H and Lee B 2017 Sci. Rep. 7 43723
[36] Yin L L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E and Kimball C W 2005 Nano Lett. 5 1399
[37] Berte R, Weber T, Menezes L D, Kuhner, L, Aigner A, Barkey M, Wendisch F J, Kivshar Y, Tittl A and Maier S A 2023 Nano Lett. 23 2651
[38] Gholipour B, Zhang J F, MacDonald K F, Hewak D W and Zheludev N I 2013 Adv. Mater. 25 3050
[39] Regan C J, de Peralta L G and Bernussi A A 2012 J. Appl. Phys. 112 103107
[40] Qiu P Z, Lv T G, Zhang Y P, Yu B B, Lian J Q, Jing M and Zhang D W 2018 Nanomaterials 8 975
[41] Lin J, Dellinger J, Genevet P, Cluzel B, de Fornel F and Capasso F 2012 Phys. Rev. Lett. 109 093904
[42] Baudrion A L, de Leon-Perez F, Mahboub O, Hohenau A, Ditlbacher H, Garcia-Vidal F J, Dintinger J, Ebbesen T W, Martin-Moreno L and Krenn J R 2008 Opt. Express 16 3420
[43] Michel A K U, Zalden P, Chigrin D N, Wuttig M, Lindenberg A M and Taubner T 2014 ACS Photon. 1 833
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[3] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[4] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[5] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[6] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[7] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[8] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[9] High-efficiency reflection phase tunable metasurface at near-infrared frequencies
Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2021, 30(5): 057802.
[10] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[11] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[12] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[13] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[14] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[15] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
No Suggested Reading articles found!