Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100302    DOI: 10.1088/1674-1056/acd8a8
GENERAL Prev   Next  

Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam

Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳)
Chongqing University of Post and Telecommunications, Chongqing 400065, China
Abstract  We present a theoretical scheme for broadband multi-channel quantum noise suppression and phase-sensitive modulation of continuous variables in a coupled resonant system with quantum entanglement properties. The effects of different coupling strengths, pumping power in suppressing quantum noise and controlling the width of quantum interference channels are analyzed carefully. Furthermore, quantum noise suppression at quadrature amplitude is obtained with phase-sensitive modulation. It shows that the entanglement strength of the output field and the quantum noise suppression effect can be enhanced significantly by a strong pumping filed due to interaction of pumping light with the nonlinear crystal. The full width at half maxima (FWHM) of the noise curve at the resonant peak ($\varDelta$ =0 MHz) is broadened up to 2.17 times compared to the single cavity. In the strong coupling resonant system, the FWHM at $\varDelta$ =0 MHz ($\varDelta$ =±3.1 MHz) is also broadened up to 1.27 (3.53) times compared to the weak coupling resonant system case. The multi-channel quantum interference creates an electromagnetically induced transparent-like line shape, which can be used to improve the transmission efficiency and stability of wave packets in quantum information processing and quantum memory.
Keywords:  quantum entanglement      broadband quantum interference      phase-sensitive modulation  
Received:  02 February 2023      Revised:  19 May 2023      Accepted manuscript online:  25 May 2023
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 11704053 and 52175531) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800629).
Corresponding Authors:  Jiajia Du     E-mail:  dujj@cqupt.edu.cn

Cite this article: 

Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳) Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam 2023 Chin. Phys. B 32 100302

[1] Owens I J, Hughes R J and Nordholt J E 2008 Phys. Rev. A 78 022307
[2] Pivoluska M, Huber M and Malik M 2018 Phys. Rev. A 97 032312
[3] Kogias I, Xiang Y, He Q and Adesso G 2017 Phys. Rev. A 95 012315
[4] Williams B P, Lukens J M, Peters N A, Qi B and Grice W P 2019 Phys. Rev. A 99 062311
[5] Barasiński A, Černoch A and Lemr K 2019 Phys. Rev. Lett. 122 170501
[6] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 60301
[7] Mukamel Gu B and Manipulating S 2020 J. Phys. Chem. Lett. 11 8177
[8] Qiu T H, Li H, Xie M, Liu Q and Ma H Y 2019 Opt. Express 27 27477
[9] Braunstein S and Loock P 2005 Rev. Mod. Phys. 77 513
[10] Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Żukowsk M 2012 Rev. Mod. Phys. 84 777
[11] Feng J X, Wan Z J, Li Y J and Zhang K S 2018 Laser Phys. Lett. 15 015209
[12] Wen F, Hui S J, Zhang S W, Wu Z K, Liu Z C, Zhu T F, Lin F, Wang W, Zhang Y P and Wang H X 2022 Ann. Phys. 534 2100396
[13] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B and Kasture S 2018 Sci. Adv. 4 eaat9331
[14] Dias J, Hosseinidehaj N and Ralph T C 2020 Phys. Rev. A 102 052425
[15] Ma H L, Ye C G, Wei D and Zhang J 2005 Phys. Rev. Lett. 95 233601
[16] Agarwal G S 2006 Phys. Rev. Lett. 97 023601
[17] Chen H X and Zhang J 2009 Phys. Rev. A 79 063826
[18] Di K, Xie C D and Zhang J 2011 Phys. Rev. Lett. 106 153602
[19] Jia X, Yan Z, Liang W, Liu Y and Peng K 2017 Nat. Commun. 8 718
[20] Wei X, Wang Y, Zhang J and Zhu Y 2011 Phys. Rev. A 84 045806
[21] Huang G and Shou C 2020 Opt. Lett. 45 6787
[22] Wei, Y C, Wu B H, Hsiao Y F, Tsai P J and Chen Y C 2020 Phys. Rev. A 102 063720
[23] Smith D D and Chang H 2004 J. Mod. Opt. 51 2503
[24] Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804
[25] Lane A S, Reid M D and Walls D F 1988 Phys. Rev. A 38 788
[26] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[27] Harrison F E and Walls D F 1995 Opt. Commun. 123 331
[28] Pan G X, Xiao R J and Zhou L 2016 Int. J. Theor. Phys. 55 3697
[29] Lawrence M J, Byer R L, Fejer M M, Bowen W, Lam P K and Bachor H A 2002 J. Opt. Soc. Am. B 19 1592
[30] Fabre C, Gicobino E and Heidman A 1989 J. Phys. France 15 1209
[31] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[32] Zhao C Y, Ye X Z, Yang C F and Chen L Y 2012 Chin. Phys. B 21 070308
[33] Zhao C Y and Tan W H 2010 Chin. Phys. B 19 030312
[34] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[35] Simon R 2000 Phys. Rev. Lett. 84 2726
[36] Zhang J, Ye C G, Gao F and Xiao M 2008 Phys. Rev. Lett. 101 233602
[37] Xiao M, Li Y Q, Jin S Z and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666
[38] Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M and Serafini A 2011 Nat. Phys. 7 13
[39] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photonics 13 346
[40] Sarfaraj M N, Sebait M and Mukhopadhyay S 2022 Optoelectron. Lett. 18 673
[41] Liu Y H, Wu L, Yan Z H, Jia X J and Peng K C 2019 Acta Phys. Sin. 68 034202 (in Chinese)
[42] Bashir F 2022 Optoelectron. Lett. 18 519
[43] Coutinho B C, Munro W J, Nemoto K and Omar Y 2022 Commum. Phys. 5 105
[44] Vernaz-Gris P, Huang K, Cao M, Alexandra S S and Julien L 2018 Nat. Commun. 9 363
[45] Magaña-Loaiza O S and Boyd R W 2019 Rep. Prog. Phys. 82 124401
[46] Lei X, Ma L, Yan J, Zhou X, Yan Z and Jia X 2022 Adv. Phys. X 7 2060133
[47] Ren Z H, Li Y, Li Y N and Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)
[48] Peniakov G, Su Z E, Beck A, Cogan D, Amar O and Gershoni D 2020 Phys. Rev. B 101 245406
[49] Zhang S X, Liu T H, Cao S, Liu Y T, Geng S B and Lian Y J 2020 Chin. Phys. B 29 50402
[1] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[2] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[5] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[9] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[10] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[11] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[12] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[13] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[14] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!