|
|
Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam |
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳)† |
Chongqing University of Post and Telecommunications, Chongqing 400065, China |
|
|
Abstract We present a theoretical scheme for broadband multi-channel quantum noise suppression and phase-sensitive modulation of continuous variables in a coupled resonant system with quantum entanglement properties. The effects of different coupling strengths, pumping power in suppressing quantum noise and controlling the width of quantum interference channels are analyzed carefully. Furthermore, quantum noise suppression at quadrature amplitude is obtained with phase-sensitive modulation. It shows that the entanglement strength of the output field and the quantum noise suppression effect can be enhanced significantly by a strong pumping filed due to interaction of pumping light with the nonlinear crystal. The full width at half maxima (FWHM) of the noise curve at the resonant peak ($\varDelta$ =0 MHz) is broadened up to 2.17 times compared to the single cavity. In the strong coupling resonant system, the FWHM at $\varDelta$ =0 MHz ($\varDelta$ =±3.1 MHz) is also broadened up to 1.27 (3.53) times compared to the weak coupling resonant system case. The multi-channel quantum interference creates an electromagnetically induced transparent-like line shape, which can be used to improve the transmission efficiency and stability of wave packets in quantum information processing and quantum memory.
|
Received: 02 February 2023
Revised: 19 May 2023
Accepted manuscript online: 25 May 2023
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 11704053 and 52175531) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800629). |
Corresponding Authors:
Jiajia Du
E-mail: dujj@cqupt.edu.cn
|
Cite this article:
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳) Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam 2023 Chin. Phys. B 32 100302
|
[1] Owens I J, Hughes R J and Nordholt J E 2008 Phys. Rev. A 78 022307 [2] Pivoluska M, Huber M and Malik M 2018 Phys. Rev. A 97 032312 [3] Kogias I, Xiang Y, He Q and Adesso G 2017 Phys. Rev. A 95 012315 [4] Williams B P, Lukens J M, Peters N A, Qi B and Grice W P 2019 Phys. Rev. A 99 062311 [5] Barasiński A, Černoch A and Lemr K 2019 Phys. Rev. Lett. 122 170501 [6] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 60301 [7] Mukamel Gu B and Manipulating S 2020 J. Phys. Chem. Lett. 11 8177 [8] Qiu T H, Li H, Xie M, Liu Q and Ma H Y 2019 Opt. Express 27 27477 [9] Braunstein S and Loock P 2005 Rev. Mod. Phys. 77 513 [10] Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Żukowsk M 2012 Rev. Mod. Phys. 84 777 [11] Feng J X, Wan Z J, Li Y J and Zhang K S 2018 Laser Phys. Lett. 15 015209 [12] Wen F, Hui S J, Zhang S W, Wu Z K, Liu Z C, Zhu T F, Lin F, Wang W, Zhang Y P and Wang H X 2022 Ann. Phys. 534 2100396 [13] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B and Kasture S 2018 Sci. Adv. 4 eaat9331 [14] Dias J, Hosseinidehaj N and Ralph T C 2020 Phys. Rev. A 102 052425 [15] Ma H L, Ye C G, Wei D and Zhang J 2005 Phys. Rev. Lett. 95 233601 [16] Agarwal G S 2006 Phys. Rev. Lett. 97 023601 [17] Chen H X and Zhang J 2009 Phys. Rev. A 79 063826 [18] Di K, Xie C D and Zhang J 2011 Phys. Rev. Lett. 106 153602 [19] Jia X, Yan Z, Liang W, Liu Y and Peng K 2017 Nat. Commun. 8 718 [20] Wei X, Wang Y, Zhang J and Zhu Y 2011 Phys. Rev. A 84 045806 [21] Huang G and Shou C 2020 Opt. Lett. 45 6787 [22] Wei, Y C, Wu B H, Hsiao Y F, Tsai P J and Chen Y C 2020 Phys. Rev. A 102 063720 [23] Smith D D and Chang H 2004 J. Mod. Opt. 51 2503 [24] Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804 [25] Lane A S, Reid M D and Walls D F 1988 Phys. Rev. A 38 788 [26] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663 [27] Harrison F E and Walls D F 1995 Opt. Commun. 123 331 [28] Pan G X, Xiao R J and Zhou L 2016 Int. J. Theor. Phys. 55 3697 [29] Lawrence M J, Byer R L, Fejer M M, Bowen W, Lam P K and Bachor H A 2002 J. Opt. Soc. Am. B 19 1592 [30] Fabre C, Gicobino E and Heidman A 1989 J. Phys. France 15 1209 [31] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [32] Zhao C Y, Ye X Z, Yang C F and Chen L Y 2012 Chin. Phys. B 21 070308 [33] Zhao C Y and Tan W H 2010 Chin. Phys. B 19 030312 [34] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722 [35] Simon R 2000 Phys. Rev. Lett. 84 2726 [36] Zhang J, Ye C G, Gao F and Xiao M 2008 Phys. Rev. Lett. 101 233602 [37] Xiao M, Li Y Q, Jin S Z and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666 [38] Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M and Serafini A 2011 Nat. Phys. 7 13 [39] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photonics 13 346 [40] Sarfaraj M N, Sebait M and Mukhopadhyay S 2022 Optoelectron. Lett. 18 673 [41] Liu Y H, Wu L, Yan Z H, Jia X J and Peng K C 2019 Acta Phys. Sin. 68 034202 (in Chinese) [42] Bashir F 2022 Optoelectron. Lett. 18 519 [43] Coutinho B C, Munro W J, Nemoto K and Omar Y 2022 Commum. Phys. 5 105 [44] Vernaz-Gris P, Huang K, Cao M, Alexandra S S and Julien L 2018 Nat. Commun. 9 363 [45] Magaña-Loaiza O S and Boyd R W 2019 Rep. Prog. Phys. 82 124401 [46] Lei X, Ma L, Yan J, Zhou X, Yan Z and Jia X 2022 Adv. Phys. X 7 2060133 [47] Ren Z H, Li Y, Li Y N and Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese) [48] Peniakov G, Su Z E, Beck A, Cogan D, Amar O and Gershoni D 2020 Phys. Rev. B 101 245406 [49] Zhang S X, Liu T H, Cao S, Liu Y T, Geng S B and Lian Y J 2020 Chin. Phys. B 29 50402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|