Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100303    DOI: 10.1088/1674-1056/ace15c
GENERAL Prev   Next  

Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model

Yue Li(李玥)1, Panpan Fang(房盼盼)1,2, Zhe Wang(王哲)1,2, Panpan Zhang(张盼盼)1,3, Yuliang Xu(徐玉良)1, and Xiangmu Kong(孔祥木)1,2,†
1 School of Physics and Optoelectronic Engineering, Institute of Theoretical Physics, Ludong University, Yantai 264025, China;
2 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
3 Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii-Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) adding the DM interaction suddenly and (ii) rotating the spins around x axis are considered to drive the dynamics of the system, respectively. By comparing the behaviors of entanglement in both types of quench protocols, the effects of quench on dynamics of entanglement are studied. It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors. Especially, the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system. In addition, the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
Keywords:  quantum entanglement      quantum phase transition      quantum quench      quantum renormalization group  
Received:  14 April 2023      Revised:  11 June 2023      Accepted manuscript online:  25 June 2023
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  73.43.Nq (Quantum phase transitions)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675090) and the Natural Science Foundation of Shandong Provincie, China (Grant No. ZR2022MA041).
Corresponding Authors:  Xiangmu Kong     E-mail:  kongxm668@163.com

Cite this article: 

Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木) Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model 2023 Chin. Phys. B 32 100303

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Xu X X 2015 Phys. Rev. A 92 012318
[4] Wehner S, Elkouss D and Hanson R 2018 Science 362 6412
[5] Cheong J W, Pradana A and Chew L Y 2022 Phys. Rev. A 106 052410
[6] Mooney G J, Hill C D and Hollenberg L C L 2019 Sci. Rep. 9 13465
[7] Xu Q S, Tan X Q, Huang R and Li M Q 2021 Phys. Rev. A 104 042412
[8] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301
[9] Sachdev S 2011 Quantum Phase Transitions, 2nd edn (Cambridge: Cambridge University Press)
[10] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[11] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[12] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[13] Wu L A and Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
[14] Tan X D, Jin B Q and Gao W 2013 Chin. Phys. B 22 20308
[15] De Nicola S, Michailidis A A and Serbyn M 2021 Phys. Rev. Lett. 126 040602
[16] Turkeshi X, Dalmonte M, Fazio R and Schiró M 2022 Phys. Rev. B 105 L241114
[17] Qin M, Ren Z Z and Zhang X 2018 Chin. Phys. B 27 60301
[18] Zhao J H and Wang H Tao 2012 Acta Phys. Sin. 61 210502 (in Chinese)
[19] Pfeuty P, Jullian R and Penson K L 1982 Renormalization for Quantum Systems (New York: Springer Berlin Heidelberg)
[20] Kargarian M, Jafari R and Langari A 2007 Phys. Rev. A 76 060304
[21] Kargarian M, Jafari R and Langari A 2008 Phys. Rev. A 77 032346
[22] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 83 062309
[23] Jafari R, Kargarian M, Langari A and Siahatgar M 2008 Phys. Rev. B 78 214414
[24] Kargarian M, Jafari R and Langari A 2009 Phys. Rev. A 79 042319
[25] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302
[26] Xu Y L, Kong X M, Liu Z Q and Yin C C 2017 Phys. Rev. A 95 042327
[27] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[28] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[29] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 443 312
[30] Jafari R and Akbari A 2020 Phys. Rev. A 101 062105
[31] Chen J Z and Zhu J Y 2001 Acta Phys. Sin. 50 1340 (in Chinese)
[32] Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302
[33] Li X M, Chen Y X, Xia Y J, Zhang Q and Man Z X 2020 Chin. Phys. B 29 060302
[34] Jafari R 2010 Phys. Rev. A 82 052317
[35] Schachenmayer J, Lanyon B P, Roos C F and Daley A J 2013 Phys. Rev. X 3 031015
[36] Alba V and Heidrich-Meisner F 2014 Phys. Rev. B 90 075144
[37] Karrasch C and Schuricht D 2013 Phys. Rev. B 87 195104
[38] Hazzard K R A, van den Worm M, Foss-Feig M, Manmana S R, Torre E G D, Pfau T, Kastner M and Rey A M 2014 Phys. Rev. A 90 063622
[39] Cincio L, Dziarmaga J, Rams M M and Zurek W H 2007 Phys. Rev. A 75 052321
[40] Mitra A 2018 Annu. Rev. Condens. Matter Phys. 9 245
[41] Wang Z, Fang P P, Xu Y L, Wang C Y, Zhang R T, Zhang H and Kong X M 2021 Physica A 581 126205
[42] Yan Y, Luan L N and Wang L C 2022 Eur. Phys. J. D 76 146
[43] Cao K Y, Zhong M and Tong P Q 2022 Chin. Phys. B 31 60505
[44] Dzyaloshinsky I 1958 J. Phys Chem. Solids 4 241
[45] Moriya T 1960 Phys. Rev. 120 91
[46] Picone P J, Kastner M A, Jenssen H P, Gabbe D R, Chen C Y, Birgeneau R J and Aharony A 1988 Phys. Rev. B 38 905
[47] Wilson K G 1971 Phys. Rev. B 4 3174
[48] Wilson K G 1971 Phys. Rev. B 4 3184
[49] Wilson K G 1975 Rev. Mod. Phys. 47 773
[50] Langari A 2004 Phys. Rev. B 69 100402
[51] Peres A 1996 Phys. Rev. Lett. 77 1413
[52] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[1] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[2] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[3] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[4] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[5] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[6] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[7] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[8] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[9] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[10] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[11] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
No Suggested Reading articles found!