|
|
Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model |
Yue Li(李玥)1, Panpan Fang(房盼盼)1,2, Zhe Wang(王哲)1,2, Panpan Zhang(张盼盼)1,3, Yuliang Xu(徐玉良)1, and Xiangmu Kong(孔祥木)1,2,† |
1 School of Physics and Optoelectronic Engineering, Institute of Theoretical Physics, Ludong University, Yantai 264025, China; 2 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China; 3 Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii-Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) adding the DM interaction suddenly and (ii) rotating the spins around x axis are considered to drive the dynamics of the system, respectively. By comparing the behaviors of entanglement in both types of quench protocols, the effects of quench on dynamics of entanglement are studied. It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors. Especially, the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system. In addition, the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
|
Received: 14 April 2023
Revised: 11 June 2023
Accepted manuscript online: 25 June 2023
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675090) and the Natural Science Foundation of Shandong Provincie, China (Grant No. ZR2022MA041). |
Corresponding Authors:
Xiangmu Kong
E-mail: kongxm668@163.com
|
Cite this article:
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木) Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model 2023 Chin. Phys. B 32 100303
|
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661 [2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [3] Xu X X 2015 Phys. Rev. A 92 012318 [4] Wehner S, Elkouss D and Hanson R 2018 Science 362 6412 [5] Cheong J W, Pradana A and Chew L Y 2022 Phys. Rev. A 106 052410 [6] Mooney G J, Hill C D and Hollenberg L C L 2019 Sci. Rep. 9 13465 [7] Xu Q S, Tan X Q, Huang R and Li M Q 2021 Phys. Rev. A 104 042412 [8] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301 [9] Sachdev S 2011 Quantum Phase Transitions, 2nd edn (Cambridge: Cambridge University Press) [10] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110 [11] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608 [12] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902 [13] Wu L A and Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404 [14] Tan X D, Jin B Q and Gao W 2013 Chin. Phys. B 22 20308 [15] De Nicola S, Michailidis A A and Serbyn M 2021 Phys. Rev. Lett. 126 040602 [16] Turkeshi X, Dalmonte M, Fazio R and Schiró M 2022 Phys. Rev. B 105 L241114 [17] Qin M, Ren Z Z and Zhang X 2018 Chin. Phys. B 27 60301 [18] Zhao J H and Wang H Tao 2012 Acta Phys. Sin. 61 210502 (in Chinese) [19] Pfeuty P, Jullian R and Penson K L 1982 Renormalization for Quantum Systems (New York: Springer Berlin Heidelberg) [20] Kargarian M, Jafari R and Langari A 2007 Phys. Rev. A 76 060304 [21] Kargarian M, Jafari R and Langari A 2008 Phys. Rev. A 77 032346 [22] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 83 062309 [23] Jafari R, Kargarian M, Langari A and Siahatgar M 2008 Phys. Rev. B 78 214414 [24] Kargarian M, Jafari R and Langari A 2009 Phys. Rev. A 79 042319 [25] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302 [26] Xu Y L, Kong X M, Liu Z Q and Yin C C 2017 Phys. Rev. A 95 042327 [27] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [28] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39 [29] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 443 312 [30] Jafari R and Akbari A 2020 Phys. Rev. A 101 062105 [31] Chen J Z and Zhu J Y 2001 Acta Phys. Sin. 50 1340 (in Chinese) [32] Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302 [33] Li X M, Chen Y X, Xia Y J, Zhang Q and Man Z X 2020 Chin. Phys. B 29 060302 [34] Jafari R 2010 Phys. Rev. A 82 052317 [35] Schachenmayer J, Lanyon B P, Roos C F and Daley A J 2013 Phys. Rev. X 3 031015 [36] Alba V and Heidrich-Meisner F 2014 Phys. Rev. B 90 075144 [37] Karrasch C and Schuricht D 2013 Phys. Rev. B 87 195104 [38] Hazzard K R A, van den Worm M, Foss-Feig M, Manmana S R, Torre E G D, Pfau T, Kastner M and Rey A M 2014 Phys. Rev. A 90 063622 [39] Cincio L, Dziarmaga J, Rams M M and Zurek W H 2007 Phys. Rev. A 75 052321 [40] Mitra A 2018 Annu. Rev. Condens. Matter Phys. 9 245 [41] Wang Z, Fang P P, Xu Y L, Wang C Y, Zhang R T, Zhang H and Kong X M 2021 Physica A 581 126205 [42] Yan Y, Luan L N and Wang L C 2022 Eur. Phys. J. D 76 146 [43] Cao K Y, Zhong M and Tong P Q 2022 Chin. Phys. B 31 60505 [44] Dzyaloshinsky I 1958 J. Phys Chem. Solids 4 241 [45] Moriya T 1960 Phys. Rev. 120 91 [46] Picone P J, Kastner M A, Jenssen H P, Gabbe D R, Chen C Y, Birgeneau R J and Aharony A 1988 Phys. Rev. B 38 905 [47] Wilson K G 1971 Phys. Rev. B 4 3174 [48] Wilson K G 1971 Phys. Rev. B 4 3184 [49] Wilson K G 1975 Rev. Mod. Phys. 47 773 [50] Langari A 2004 Phys. Rev. B 69 100402 [51] Peres A 1996 Phys. Rev. Lett. 77 1413 [52] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|