1 School of Physics and Optoelectronic Engineering, Institute of Theoretical Physics, Ludong University, Yantai 264025, China; 2 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China; 3 Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii-Moriya (DM) interaction by using the quantum renormalization-group method and the definition of negativity. Two types of quench protocols (i) adding the DM interaction suddenly and (ii) rotating the spins around x axis are considered to drive the dynamics of the system, respectively. By comparing the behaviors of entanglement in both types of quench protocols, the effects of quench on dynamics of entanglement are studied. It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors. Especially, the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system. In addition, the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
(Entanglement measures, witnesses, and other characterizations)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675090) and the Natural Science Foundation of Shandong Provincie, China (Grant No. ZR2022MA041).
Corresponding Authors:
Xiangmu Kong
E-mail: kongxm668@163.com
Cite this article:
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木) Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model 2023 Chin. Phys. B 32 100303
[1] Ekert A K 1991 Phys. Rev. Lett.67 661 [2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys.81 865 [3] Xu X X 2015 Phys. Rev. A92 012318 [4] Wehner S, Elkouss D and Hanson R 2018 Science362 6412 [5] Cheong J W, Pradana A and Chew L Y 2022 Phys. Rev. A106 052410 [6] Mooney G J, Hill C D and Hollenberg L C L 2019 Sci. Rep.9 13465 [7] Xu Q S, Tan X Q, Huang R and Li M Q 2021 Phys. Rev. A104 042412 [8] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B29 060301 [9] Sachdev S 2011 Quantum Phase Transitions, 2nd edn (Cambridge: Cambridge University Press) [10] Osborne T J and Nielsen M A 2002 Phys. Rev. A66 032110 [11] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature416 608 [12] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett.90 227902 [13] Wu L A and Sarandy M S and Lidar D A 2004 Phys. Rev. Lett.93 250404 [14] Tan X D, Jin B Q and Gao W 2013 Chin. Phys. B22 20308 [15] De Nicola S, Michailidis A A and Serbyn M 2021 Phys. Rev. Lett.126 040602 [16] Turkeshi X, Dalmonte M, Fazio R and Schiró M 2022 Phys. Rev. B105 L241114 [17] Qin M, Ren Z Z and Zhang X 2018 Chin. Phys. B27 60301 [18] Zhao J H and Wang H Tao 2012 Acta Phys. Sin.61 210502 (in Chinese) [19] Pfeuty P, Jullian R and Penson K L 1982 Renormalization for Quantum Systems (New York: Springer Berlin Heidelberg) [20] Kargarian M, Jafari R and Langari A 2007 Phys. Rev. A76 060304 [21] Kargarian M, Jafari R and Langari A 2008 Phys. Rev. A77 032346 [22] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A83 062309 [23] Jafari R, Kargarian M, Langari A and Siahatgar M 2008 Phys. Rev. B78 214414 [24] Kargarian M, Jafari R and Langari A 2009 Phys. Rev. A79 042319 [25] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A84 042302 [26] Xu Y L, Kong X M, Liu Z Q and Yin C C 2017 Phys. Rev. A95 042327 [27] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.80 885 [28] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature415 39 [29] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature443 312 [30] Jafari R and Akbari A 2020 Phys. Rev. A101 062105 [31] Chen J Z and Zhu J Y 2001 Acta Phys. Sin.50 1340 (in Chinese) [32] Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett.33 050302 [33] Li X M, Chen Y X, Xia Y J, Zhang Q and Man Z X 2020 Chin. Phys. B29 060302 [34] Jafari R 2010 Phys. Rev. A82 052317 [35] Schachenmayer J, Lanyon B P, Roos C F and Daley A J 2013 Phys. Rev. X3 031015 [36] Alba V and Heidrich-Meisner F 2014 Phys. Rev. B90 075144 [37] Karrasch C and Schuricht D 2013 Phys. Rev. B87 195104 [38] Hazzard K R A, van den Worm M, Foss-Feig M, Manmana S R, Torre E G D, Pfau T, Kastner M and Rey A M 2014 Phys. Rev. A90 063622 [39] Cincio L, Dziarmaga J, Rams M M and Zurek W H 2007 Phys. Rev. A75 052321 [40] Mitra A 2018 Annu. Rev. Condens. Matter Phys.9 245 [41] Wang Z, Fang P P, Xu Y L, Wang C Y, Zhang R T, Zhang H and Kong X M 2021 Physica A581 126205 [42] Yan Y, Luan L N and Wang L C 2022 Eur. Phys. J. D76 146 [43] Cao K Y, Zhong M and Tong P Q 2022 Chin. Phys. B31 60505 [44] Dzyaloshinsky I 1958 J. Phys Chem. Solids4 241 [45] Moriya T 1960 Phys. Rev.120 91 [46] Picone P J, Kastner M A, Jenssen H P, Gabbe D R, Chen C Y, Birgeneau R J and Aharony A 1988 Phys. Rev. B38 905 [47] Wilson K G 1971 Phys. Rev. B4 3174 [48] Wilson K G 1971 Phys. Rev. B4 3184 [49] Wilson K G 1975 Rev. Mod. Phys.47 773 [50] Langari A 2004 Phys. Rev. B69 100402 [51] Peres A 1996 Phys. Rev. Lett.77 1413 [52] Vidal G and Werner R F 2002 Phys. Rev. A65 032314
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.