Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100301    DOI: 10.1088/1674-1056/acdc11
GENERAL Prev   Next  

Geometric discord of tripartite quantum systems

Chunhe Xiong(熊春河)1,2,†, Wentao Qi(齐文韬)3, Maoke Miao(缪茂可)4, and Minghui Wu(吴明晖)2
1 Interdisciplinary Center for Quantum Information, School of Physics, Zhejiang University, Hangzhou 310027, China;
2 School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China;
3 School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China;
4 School of information and electrical engineering, Hangzhou City University, Hangzhou 310015, China
Abstract  We study the quantification of geometric discord for tripartite quantum systems. Firstly, we obtain the analytic formula of geometric discord for tripartite pure states. It is already known that the geometric discord of pure states reduces to the geometric entanglement in bipartite systems, the results presented here show that this property is no longer true in tripartite systems. Furthermore, we provide an operational meaning for tripartite geometric discord by linking it to quantum state discrimination, that is, we prove that the geometric discord of tripartite states is equal to the minimum error probability to discriminate a set of quantum states with von Neumann measurement. Lastly, we calculate the geometric discord of three-qubit Bell diagonal states and then investigate the dynamic behavior of tripartite geometric discord under local decoherence. It is interesting that the frozen phenomenon exists for geometric discord in this scenario.
Keywords:  geometric discord      tripartite quantum systems      quantum state discriminations      frozen discord  
Received:  19 April 2023      Revised:  25 May 2023      Accepted manuscript online:  07 June 2023
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12201555) and China Postdoctoral Science Foundation (Grant No. 2021M702864).
Corresponding Authors:  Chunhe Xiong     E-mail:  xiongchunhe@zju.edu.cn

Cite this article: 

Chunhe Xiong(熊春河), Wentao Qi(齐文韬), Maoke Miao(缪茂可), and Minghui Wu(吴明晖) Geometric discord of tripartite quantum systems 2023 Chin. Phys. B 32 100301

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[3] Li Y and Ye X J and Chen J L 2016 Chin. Phys. Lett. 33 080301
[4] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[5] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661
[7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[8] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[9] Shor P W 1994 Proc. 35th Annual IEEE Symposium on Foundatins of Computer Science, November 20-22, 1994, Santa Fe, USA, p. 124
[10] Datta A, Flammia S T and Caves C M 2005 Phys. Rev. A 72 042316
[11] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[12] Ahnefeld F, Theurer T, Egloff D, Matera J M and Plenio M B 2022 Phys. Rev. Lett. 129 120501
[13] Yin Q, Xiang G Y, Li C F and Guo G C 2017 Chin. Phys. Lett. 34 030301
[14] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[15] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[16] Okrasa M and Walczak Z 2011 Europhys. Lett. 96 60003
[17] Giorgi G L, Bellomo B, Galve F and Zambrini R 2011 Phys. Rev. Lett. 107 190501
[18] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[19] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1
[20] Bera A, Das T, Sadhukhan D, Roy S S, Sen(De) A and Sen U 2018 Rep. Prog. Phys. 81 024001
[21] Radhakrishnan C, Laurière M and Byrnes T 2020 Phys. Rev. Lett. 124 110401
[22] Li B, Zhu C L, Liang X B, Ye B L and Fei S M 2021 Phys. Rev. A 104 012428
[23] Zhou J, Hu H and Jing N 2022 Quantum. Inf. Process. 21 147
[24] Zhu C L, Hu B, Li B, Wang Z X and Fei S M 2022 Quantum. Inf. Process. 21 264
[25] Wei J N, Duan Z B and Zhang J 2022 Int. J. Theor. Phys. 61 257
[26] Zhou X and Zheng Z J 2022 Eur. Phys. J. Plus 137 625
[27] Datta A 2016 arXiv: 1003.5256 [quant-ph]
[28] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[29] Spehner D and Orszag M 2013 New J. Phys. 15 103001
[30] Spehner D and Orszag M 2013 J. Phys. A: Math. Theor. 47 035302
[31] Roga W, Spehner D and Illuminati F 2015 J. Phys. A: Math. Theor. 49 235301
[32] Wei T C and Goldbart P M 2003 Phys. Rev. A 68 042307
[33] Streltsov A, Singh U, Dhar H S, Bera M and Adesso G 2015 Phys. Rev. Lett. 115 020403
[34] Nielsen M and Chuang I 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press) p. 409
[35] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[36] Aaronson B, Franco R Lo and Adesso G 2013 Phys. Rev. A 88 012120
[37] Eldar Y C 2003 Phys. Rev. A 68 052303
[38] Bhatia R 1996 Matrix Analysis: Graduate Texts in Mathematics 169 (Berlin: Springer) p. 58
[39] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[1] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[2] Geometric discord for non-X states
Liu Chen (刘辰), Dong Yu-Li (董裕力), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2014, 23(6): 060307.
[3] Relative ordering of square-norm distance correlations in open quantum systems
Wu Tao (吴韬), Song Xue-Ke (宋学科), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(10): 100302.
No Suggested Reading articles found!