|
|
Geometric discord of tripartite quantum systems |
Chunhe Xiong(熊春河)1,2,†, Wentao Qi(齐文韬)3, Maoke Miao(缪茂可)4, and Minghui Wu(吴明晖)2 |
1 Interdisciplinary Center for Quantum Information, School of Physics, Zhejiang University, Hangzhou 310027, China; 2 School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China; 3 School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China; 4 School of information and electrical engineering, Hangzhou City University, Hangzhou 310015, China |
|
|
Abstract We study the quantification of geometric discord for tripartite quantum systems. Firstly, we obtain the analytic formula of geometric discord for tripartite pure states. It is already known that the geometric discord of pure states reduces to the geometric entanglement in bipartite systems, the results presented here show that this property is no longer true in tripartite systems. Furthermore, we provide an operational meaning for tripartite geometric discord by linking it to quantum state discrimination, that is, we prove that the geometric discord of tripartite states is equal to the minimum error probability to discriminate a set of quantum states with von Neumann measurement. Lastly, we calculate the geometric discord of three-qubit Bell diagonal states and then investigate the dynamic behavior of tripartite geometric discord under local decoherence. It is interesting that the frozen phenomenon exists for geometric discord in this scenario.
|
Received: 19 April 2023
Revised: 25 May 2023
Accepted manuscript online: 07 June 2023
|
PACS:
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12201555) and China Postdoctoral Science Foundation (Grant No. 2021M702864). |
Corresponding Authors:
Chunhe Xiong
E-mail: xiongchunhe@zju.edu.cn
|
Cite this article:
Chunhe Xiong(熊春河), Wentao Qi(齐文韬), Maoke Miao(缪茂可), and Minghui Wu(吴明晖) Geometric discord of tripartite quantum systems 2023 Chin. Phys. B 32 100301
|
[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [2] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 [3] Li Y and Ye X J and Chen J L 2016 Chin. Phys. Lett. 33 080301 [4] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 [5] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003 [6] Ekert A K 1991 Phys. Rev. Lett. 67 661 [7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [8] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 [9] Shor P W 1994 Proc. 35th Annual IEEE Symposium on Foundatins of Computer Science, November 20-22, 1994, Santa Fe, USA, p. 124 [10] Datta A, Flammia S T and Caves C M 2005 Phys. Rev. A 72 042316 [11] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 [12] Ahnefeld F, Theurer T, Egloff D, Matera J M and Plenio M B 2022 Phys. Rev. Lett. 129 120501 [13] Yin Q, Xiang G Y, Li C F and Guo G C 2017 Chin. Phys. Lett. 34 030301 [14] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [15] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899 [16] Okrasa M and Walczak Z 2011 Europhys. Lett. 96 60003 [17] Giorgi G L, Bellomo B, Galve F and Zambrini R 2011 Phys. Rev. Lett. 107 190501 [18] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501 [19] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1 [20] Bera A, Das T, Sadhukhan D, Roy S S, Sen(De) A and Sen U 2018 Rep. Prog. Phys. 81 024001 [21] Radhakrishnan C, Laurière M and Byrnes T 2020 Phys. Rev. Lett. 124 110401 [22] Li B, Zhu C L, Liang X B, Ye B L and Fei S M 2021 Phys. Rev. A 104 012428 [23] Zhou J, Hu H and Jing N 2022 Quantum. Inf. Process. 21 147 [24] Zhu C L, Hu B, Li B, Wang Z X and Fei S M 2022 Quantum. Inf. Process. 21 264 [25] Wei J N, Duan Z B and Zhang J 2022 Int. J. Theor. Phys. 61 257 [26] Zhou X and Zheng Z J 2022 Eur. Phys. J. Plus 137 625 [27] Datta A 2016 arXiv: 1003.5256 [quant-ph] [28] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502 [29] Spehner D and Orszag M 2013 New J. Phys. 15 103001 [30] Spehner D and Orszag M 2013 J. Phys. A: Math. Theor. 47 035302 [31] Roga W, Spehner D and Illuminati F 2015 J. Phys. A: Math. Theor. 49 235301 [32] Wei T C and Goldbart P M 2003 Phys. Rev. A 68 042307 [33] Streltsov A, Singh U, Dhar H S, Bera M and Adesso G 2015 Phys. Rev. Lett. 115 020403 [34] Nielsen M and Chuang I 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press) p. 409 [35] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 [36] Aaronson B, Franco R Lo and Adesso G 2013 Phys. Rev. A 88 012120 [37] Eldar Y C 2003 Phys. Rev. A 68 052303 [38] Bhatia R 1996 Matrix Analysis: Graduate Texts in Mathematics 169 (Berlin: Springer) p. 58 [39] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|