CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anomalous Hall effect in ferromagnetic LaCo2As2 and ferrimagnetic NdCo2As2 |
Yu-Qing Huang(黄雨晴)1,2, Peng-Yu Zheng(郑鹏宇)3, Rui Liu(刘瑞)3, Xi-Tong Xu(许锡童)1, Zi-Yang Wu(吴紫阳)4, Chao Dong(董超)4, Jun-Feng Wang(王俊峰)4, Zhi-Ping Yin(殷志平)3, and Shuang Jia(贾爽)1,2,5,† |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100081, China; 2 Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China; 3 Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China; 4 Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; 5 Kunshan Innovation Institute of Nanjing University, Kunshan 215347, China |
|
|
Abstract We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo2As2 and NdCo2As2. LaCo2As2 is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect (AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo2As2 manifests pronounced sign reversal and multiple hysteresis loops in temperature- and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo2As2 is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo2As2 provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.
|
Received: 14 April 2023
Revised: 26 May 2023
Accepted manuscript online: 26 May 2023
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1502502), the National Natural Science Foundation of China (Grant Nos. 12141002 and 12225401), the Fund from Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory. The work in the high magnetic field lad was supported by the Interdisciplinary Program of Wuhan National High Magnetic Field Center (Grant No. WHMFC202123), Huazhong University of Science and Technology. Z. Y. was supported by the National Natural Science Foundation of China (Grant Nos. 12074041 and 11674030), the Foundation of the National Key Laboratory of Shock Wave and Detonation Physics (Grant No. 6142A03191005), the National Key Research and Development Program of China (Grant No. 2016YFA0302300), and the startup funding of Beijing Normal University. |
Corresponding Authors:
Shuang Jia
E-mail: gwljiashuang@pku.edu.cn
|
Cite this article:
Yu-Qing Huang(黄雨晴), Peng-Yu Zheng(郑鹏宇), Rui Liu(刘瑞), Xi-Tong Xu(许锡童), Zi-Yang Wu(吴紫阳), Chao Dong(董超), Jun-Feng Wang(王俊峰), Zhi-Ping Yin(殷志平), and Shuang Jia(贾爽) Anomalous Hall effect in ferromagnetic LaCo2As2 and ferrimagnetic NdCo2As2 2023 Chin. Phys. B 32 107502
|
[1] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [2] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154 [3] Smit J 1955 Physica 21 877 [4] Smit J 1958 Physica 24 39 [5] Berger L 1970 Phys. Rev. B 2 4559 [6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [7] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [8] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S 2016 Sci. Adv. 2 e1501870 [9] Smejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482 [10] Néel L 1948 Ann. Phys. (Paris) 3 137 [11] Pauthenet R 1958 J. Appl. Phys. 29 253 [12] Clark A E and Callen E 1968 J. Appl. Phys. 39 5972 [13] McGuire T R, Gambino R J and Taylor R C 1977 J. Appl. Phys. 48 2965 [14] Malmhäll R 1983 J. Appl. Phys. 54 5128 [15] Stanciu C D, Kimel A V, Hansteen F, Tsukamoto A, Itoh A, Kirilyuk A and Rasing T 2006 Phys. Rev. B 73 220402 [16] Finley J and Liu L 2016 Phys. Rev. Appl. 6 054001 [17] Mishra R, Yu J, Qiu X, Motapothula M, Venkatesan T and Yang H 2017 Phys. Rev. Lett. 118 167201 [18] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K and Ono T 2017 Nat. Mater. 16 1187 [19] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 [20] Becker J, Tsukamoto A, Kirilyuk A, Maan J C, Rasing T, Christianen P C M and Kimel A V 2017 Phys. Rev. Lett. 118 117203 [21] Bhatt R C, Ye L X, Hai N T, Wu J C and Wu T H 2021 J. Magn. Magn. Mater. 537 168196 [22] Okuno T, Kim K J, Tono T, Kim S, Moriyama T, Yoshikawa H, Tsukamoto A and Ono T 2016 Appl. Phys. Express 9 073001 [23] Xu Y, Chen D, Tong S, Chen H, Qiu X, Wei D and Zhao J 2020 Phys. Rev. Appl. 14 034064 [24] Davydova M D, Skirdkov P N, Zvezdin K A, Wu J C, Ciou S Z, Chiou Y R, Ye L X, Wu T H, Bhatt R C, Kimel A V and Zvezdin A K 2020 Phys. Rev. Appl. 13 034053 [25] Park J, Hirata Y, Kang J H, Lee S, Kim S, Van Phuoc C, Jeong J R, Park J, Park S Y, Jo Y, Tsukamoto A, Ono T, Kim S K and Kim K J 2021 Phys. Rev. B 103 014421 [26] Shi W, Muechler L, Manna K, Zhang Y, Koepernik K, Car R, van den B J, Felser C and Sun Y 2018 Phys. Rev. B 97 060406 [27] Park M, Han G and Rhim S H 2022 Phys. Rev. Res. 4 013215 [28] Yin J X, Ma W, Cochran T A, et al. 2020 Nature 583 533 [29] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602 [30] Marchand R and Jeitschko W 1978 J. Solid State Chem. 24 351 [31] Jia S, Jiramongkolchai P, Suchomel M R, Toby B H, Checkelsky J G, Ong N P and Cava R J 2011 Nat. Phys. 7 207 [32] Lai Y, Chan J Y and Baumbach R E 2022 Sci. Adv. 8 eabp8264 [33] Tan X, Tener Z P and Shatruk M 2018 Acc. Chem. Res. 51 230 [34] Thompson C M, Tan X, Kovnir K, Garlea V O, Gippius A A, Yaroslavtsev A A, Menushenkov A P, Chernikov R V, Büttgen N, Krätschmer W, Zubavichus Y V and Shatruk M 2014 Chem. Mater. 26 3825 [35] Tan X 2016 Synthesis and Investigation of Ternary Intermetallics as Itinerant Magnets, Ph. D. Dissertation (The Florida State University) [36] Thompson C M 2012 Magneto-Structural Correlations in Rare Earth-Cobalt Pnictides, Ph. D. Dissertation (The Florida State University) [37] Menushenkov A P, Yaroslavtsev A A, Geondzhian A Y, Chernikov R V, Zubavichus Y V, Tan X and Shatruk M 2015 J. Supercond. Nov. Magn. 28 995 [38] Cheng Z J, Huang Y, Zheng P, et al. 2023 arXiv preprint arXiv: 2302.12113 [39] Thompson C M, Kovnir K, Eveland S, Herring M J and Shatruk M 2011 Chem. Commun. 47 5563 [40] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [41] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902 [42] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [43] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107 [44] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865 [45] Blaha P, Schwarz K, Madsen G K, Kvasnicka D and Luitz J 2001 An augmented plane wave+local orbitals program for calculating crystal properties 60 1 [46] Mao H and Yin Z 2018 Phys. Rev. B 98 115128 [47] Haule K 2015 Phys. Rev. Lett. 115 196403 [48] Haule K 2007 Phys. Rev. B 75 155113 [49] Werner P, Comanac A, De'Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405 [50] Marrows C H and Dalton B C 2004 Phys. Rev. Lett. 92 097206 [51] Zeng C, Yao Y, Niu Q and Weitering H H 2006 Phys. Rev. Lett. 96 037204 [52] Zhu T 2014 Chin. Phys. B 23 047504 [53] Ding J J, Wu S B, Yang X F and Zhu T 2015 Chin. Phys. B 24 027201 [54] Zhu L J, Nie S H and Zhao J H 2016 Phys. Rev. B 93 195112 [55] Hazra B K, Kaul S N, Srinath S, Raja M M, Rawat R and Lakhani A 2017 Phys. Rev. B 96 184434 [56] Hou D, Su G, Tian Y, Jin X, Yang S A and Niu Q 2015 Phys. Rev. Lett. 114 217203 [57] Yue D and Jin X 2017 J. Phys. Soc. Jpn. 86 011006 [58] Wang G, Sun Z, Si X and Jia S 2020 Chin. Phys. B 29 077503 [59] Zhou H, Chang G, Wang G, Gui X, Xu X, Yin J X, Guguchia Z, Zhang S S, Chang T R, Lin H, Xie W, Hasan M Z and Jia S 2020 Phys. Rev. B 101 125121 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|