Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107801    DOI: 10.1088/1674-1056/ace1d8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive

Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜)
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China
Abstract  In the past period of time, perovskite solar cells have gained tremendous developments in improving photovoltaic performance, but they still face severe challenges. Defects in perovskite layers, especially at grain boundaries, severely limit the stabilization and efficiency of solar cells. In this work, we adopt 3-carboxyphenylboronic acid (CPBA) for modifying defects in perovskite thin films. Through the interaction among the carboxyl group, boronic acid and lead ions in the perovskite film, the crystallization effect of the perovskite molecular is greatly optimized. Moreover, the film defects are spontaneously passivated and the band gap is reduced, increasing the open circuit voltage and fill factor. Therefore, power conversion efficiency has been increased from 17.25% to 20.20%. This discovery provides a potential strategy for passivating the trap states in perovskite and enhancing the properties of devices.
Keywords:  passivation      defects      3-carboxyphenylboronic acid      perovskite solar cells  
Received:  27 April 2023      Revised:  15 June 2023      Accepted manuscript online:  27 June 2023
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  88.40.hj (Efficiency and performance of solar cells)  
  73.61.-r (Electrical properties of specific thin films)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the Regional Joint Fund of the National Science Foundation of China (Grant No. U21A20492), and the Sichuan Science and Technology Program (Grant Nos. 2022YFH0081, 2022YFG0012, and 2022YFG0013). This work was also sponsored by the Sichuan Province Key Laboratory of Display Science and Technology, and Qiantang Science & Technology Innovation Center.
Corresponding Authors:  Jun-Sheng Yu     E-mail:  jsyu@uestc.edu.cn

Cite this article: 

Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜) Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive 2023 Chin. Phys. B 32 107801

[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591
[2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[3] Yin W J, Shi T and Yan Y 2014 Adv. Mater. 26 4653
[4] De Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H and Ballif C 2014 J. Phys. Chem. Lett. 5 1035
[5] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[6] Edri E, Kirmayer S, Cahen D and Hodes G 2013 J. Phys. Chem. Lett. 4 897
[7] Stranks Samuel D, Eperon Giles E, Grancini G, Menelaou C, Alcocer Marcelo J P, Leijtens T, Herz Laura M, Petrozza A and Snaith Henry J 2013 Science 342 341
[8] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Amer. Chem. Soc. 131 6050
[9] Min H, Lee D Y, Kim J, Kim G, Lee K S, Kim J, Paik M J, Kim Y K, Kim K S, Kim M G, Shin T J and Il Seok S 2021 Nature 598 444
[10] Chen H, Ye F, Tang W, He J, Yin M, Wang Y, Xie F, Bi E, Yang X, Grätzel M and Han L 2017 Nature 550 92
[11] Chiang C H, Nazeeruddin M K, Grätzel M and Wu C G 2017 Energy Environ. Sci. 10 808
[12] Wolff C M, Caprioglio P, Stolterfoht M and Neher D 2019 Adv. Mater. 31 1902762
[13] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C and Huang J 2017 Nat. Energy 2 17102
[14] Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F and Huang J 2019 Science 365 473
[15] Tailor N K, Abdi-Jalebi M, Gupta V, Hu H, Dar M I, Li G and Satapathi S 2020 J. Mater. Chem. A 8 21356
[16] Zhang F, Bi D, Pellet N, Xiao C, Li Z, Berry J J, Zakeeruddin S M, Zhu K and Grätzel M 2018 Energy Enviro. Sci. 11 3480
[17] Zheng X, Deng Y, Chen B, Wei H, Xiao X, Fang Y, Lin Y, Yu Z, Liu Y, Wang Q and Huang J 2018 Adv. Mater. 30 1803428
[18] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D and Park N G 2018 J. Amer. Chem. Soc. 140 1358
[19] Bush K A, Rolston N, Gold-Parker A, Manzoor S, Hausele J, Yu Z J, Raiford J A, Cheacharoen R, Holman Z C, Toney M F, Dauskardt R H and Mcgehee M D 2018 ACS Energy Lett. 3 1225
[20] Li N, Luo Y, Chen Z, Niu X, Zhang X, Lu J, Kumar R, Jiang J, Liu H, Guo X, Lai B, Brocks G, Chen Q, Tao S, Fenning D P and Zhou H 2020 Joule 4 1743
[21] Moore D T, Sai H, Tan K W, Smilgies D M, Zhang W, Snaith H J, Wiesner U and Estroff L A 2015 J. Amer. Chem. Soc. 137 2350
[22] Fu S, Zhang W, Li X, Wan L, Wu Y, Chen L, Liu X and Fang J 2020 ACS Energy Lett. 5 676
[23] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q and Liu S 2018 Adv. Energy Mater. 8 1703246
[24] Prochowicz D, Tavakoli M M, Kalam A, Chavan R D, Trivedi S, Kumar M and Yadav P 2019 J. Mater. Chem. A 7 8218
[25] Zhang F, Silver S H, Noel N K, Ullrich F, Rand B P and Kahn A 2020 Adv. Energy Mater. 10 1903252
[26] Azmi R, Ugur E, Seitkhan A, et al. 2022 Science 376 73
[27] Stolterfoht M, Wolff C M, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P and Neher D 2017 Energy Enviro. Sci. 10 1530
[28] Bisquert J, Zaban A, Greenshtein M and Mora-Seró I 2004 J. Amer. Chem. Soc. 126 13550
[29] Kim M, Jeong J, Lu H, et al. 2022 Science 375 302
[30] Singh T and Miyasaka T 2018 Adv. Energy Mater. 8 1700677
[1] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[2] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[3] Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: A trade-off of electrical effects
Ye Tu(涂野), Yong Li(李勇), and Guanchao Yin(殷官超). Chin. Phys. B, 2023, 32(6): 068101.
[4] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[5] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[8] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[9] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[10] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[11] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
No Suggested Reading articles found!