Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107802    DOI: 10.1088/1674-1056/ace1d7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photonic Dirac cone and topological transition in a moving dielectric slab

Xinyang Pan(潘昕阳)1, Haitao Li(李海涛)1, Weijie Dong(董为杰)1, Xiaoxi Zhou(周萧溪)2, Gang Wang(王钢)1,†, and Bo Hou(侯波)3,‡
1 School of Physical Science and Technology&Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China;
2 School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China;
3 Wave Functional Metamaterial Research Facility, The Hong Kong University of Science and Technology(Guangzhou), Guangzhou 511400, China
Abstract  The moving media theory is applied to a photonic confined structure which is a continuous dielectric slab waveguide with the uniaxial anisotropy and without the discrete translational symmetry. The moving effect not only brings about non-reciprocity to the whole photonic band structure in the co-moving and counter-moving directions, but also leads to the topological transition of local degenerate points within the band diagram. We demonstrate through calculation that the type-II Dirac point can be turned into type-I Dirac point when the uniaxial slab is moving over certain speed. Our results provide a new approach to regulate the topology of degeneracy for two-dimensional photonic bands in the continuous translational symmetry condition.
Keywords:  Dirac point      transition      moving      guided mode  
Received:  13 May 2023      Revised:  13 June 2023      Accepted manuscript online:  27 June 2023
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  67.10.Ba (Boson degeneracy)  
  03.65.Pm (Relativistic wave equations)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074279), the Major Program of Natural Science Research of Jiangsu Higher Education Institutions (Grant No. 18KJA140003), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.
Corresponding Authors:  Gang Wang, Bo Hou     E-mail:  phwanggang@gmail.com;bohou@hkust-gz.edu.cn

Cite this article: 

Xinyang Pan(潘昕阳), Haitao Li(李海涛), Weijie Dong(董为杰), Xiaoxi Zhou(周萧溪), Gang Wang(王钢), and Bo Hou(侯波) Photonic Dirac cone and topological transition in a moving dielectric slab 2023 Chin. Phys. B 32 107802

[1] Neto C A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[3] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[4] Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D and Soljacic M 2015 Science 349 622
[5] Gao W, Yang W, Lawrence W, Fang W, Béril B and Zhang S 2016 Nat. Commun. 7 12435
[6] Yang B, Guo Q, Tremain B, Barr L E, Gao W, Liu H, Béril B, Xiang Y, Fan D, Hibbins A P and Zhang S 2017 Nat. Commun. 8 97
[7] Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J, Fang C, Hibbins A, Lu L and Zhang S 2018 Science 359 1013
[8] Luo L, Deng W, Yang Y, Yan M, Lu J, Huang X and Liu Z 2022 Phys. Rev. B 106 134108
[9] Liu G G, Zhou P, Yang Y, Xue H, Ren X, Lin X, Sun H X, Bi L, Chong Y and Zhang B 2020 Nat. Commun. 11 1873
[10] Qiu P, Qiu W, Lin Z, Chen H, Ren J, Wang J X, Kan Q and Pan J Q 2017 J. Phys. D: Appl. Phys. 50 335101
[11] Xiao M, Lin Q and Fan S 2016 Phys. Rev. Lett. 117 057401
[12] Yang Y, Gao Z, Feng X, Huang Y X, Zhou P, Yang S A, Chong Y and Zhang B 2020 Phys. Rev. Lett. 125 143001
[13] Volovik G E 2018 Phys.-Usp. 61 89
[14] Westström A and Ojanen T 2017 Phys. Rev. X 7 041026
[15] Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y and Yang S A 2017 npj Quantum Mater. 2 23
[16] Liu H, Sun J T, Song C, Huang H, Liu F and Meng S 2020 Chin. Phys. Lett. 37 067101
[17] Jia H, Zhang R Y, Gao W, Zhang S and Chan C T 2021 Phys. Rev. B 104 045132
[18] Joannopoulos J D, Meade R D, Johnson S G and Joshua N 2011 Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton: Princeton University Press) pp. 27, 32
[19] Deng W M, Chen Z M, Li M Y, Guo C H, Tian Z T, Sun K X, Chen X D, Chen W J and Dong J W 2022 Light Sci. Appl. 11 134
[20] Hu M, Zhang Y, Jiang X, Qiao T, Wang Q, Zhu S, Xiao M and Liu H 2021 Light Sci. Appl. 10 170
[21] Pan X, Li H, Dong W, Zhou X, Xing K A, Hu C, Wang G and Hou B 2023 Front. Phys. 10 1095669
[22] Fan S and Joannopoulos J D 2002 Phys. Rev. B 65 235112
[23] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233
[24] He X T, Liu J W, Shi F L, Shen K, Chen W J, Chen X D and Dong J W 2022 Sci. China-Phys. Mech. Astron. 65 284212
[25] Fresnel A J 1868 Theory of light. Fifth section: various questions of optics, letter to Arago, September 1818. In Oeuvers completes d'Augustin Fresnel, Vol. 2 627
[26] Fizeau A H L 1851 CR Hebd. Acad. Sci. 33 349
[27] Kong J A 2000 Electromagnetic Wave Theory (Cambridge: EMW Publishing) p. 879
[28] Aigner A, Dawes J M, Maier S A and Ren H 2022 Light. Sci. Appl. 11 9
[29] Jia G, Luo J, Wang H, Ma Q, Liu Q, Dai H and Asgari R 2022 Nanoscale 14 17096
[30] Ferrari L, Wu C, Lepage D, Zhang X and Liu Z 2015 Prog. Quantum Electron. 40 1
[31] Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Nat. Photon. 7 948
[32] Lee D, So S, Hu G, Kim M, Badloe T, Cho H, Kim J, Kim H, Qiu C W and Rho J 2022 eLight 2 1
[33] Pozer D M 1998 Microwave Engineering, 2nd edn. (New York: John Wiley & Sons) p. 705
[34] https://www.rogerspcb.com.cn/
[35] Huidobro P A, Galiffi E, Guenneau S, Craster R V and Pendry J B 2019 Proc. Natl. Acad. Sci. USA 116 24943
[1] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[2] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[3] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[4] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[5] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[6] A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园). Chin. Phys. B, 2023, 32(9): 097402.
[7] Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉),Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
[8] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[9] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[10] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[11] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[12] Anion type-dependent confinement effect on glass transitions of solutions of LiTFSI and LiFSI
Jinbing Zhang(张晋兵), Fengping Wang(王凤平), Zexian Cao(曹则贤), and Qiang Wang(王强). Chin. Phys. B, 2023, 32(7): 076401.
[13] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[14] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[15] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
No Suggested Reading articles found!