Abstract We analyze the performance of a quantum Stirling heat engine (QSHE), using a two-level system and a harmonic oscillator as the working medium, that is in contact with a squeezed thermal reservoir and a cold reservoir. First, we derive closed-form expressions for the produced work and efficiency, which strongly depend on the squeezing parameter . Then, we prove that the effect of squeezing heats the working medium to a higher effective temperature, which leads to better overall performance. In particular, the efficiency increases with the degree of squeezing, surpassing the standard Carnot limit when the ratio of the temperatures of the hot and cold reservoirs is small. Furthermore, we derive the analytical expressions for the efficiency at maximum work and the maximum produced work in the high and low temperature regimes, and we find that at extreme temperatures the squeezing parameter does not affect the performance of the QSHE. Finally, the performance of the QSHE depends on the nature of the working medium.
Nikolaos Papadatos Quantum Stirling heat engine with squeezed thermal reservoir 2023 Chin. Phys. B 32 100702
[1] Vinjanampathy S and Anders J 2016 Contemporary Physics57 545 [2] Bimalendu N Roy 2002 Fundamentals of Classical and Statistical Thermodynamics, (John Wiley and Sons) [3] Alicki R and Kosloff R 2018 Introduction to Quantum Thermodynamics: History and Prospects. In: Binder F., Correa L., Gogolin C., Anders J., Adesso G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol. 195, Springer [4] Callen H B 1985 Thermodynamics and an Introduction to Thermostatistics Wiley: New York [5] Yuen C K 1970 American Journal of Physics38 246 [6] Callen H and Horwitz G 1971 American Journal of Physics39 938 [7] Farias C, Pinto V A and Moya P S 2017 Sci. Rep.7 17657 [8] Mosengeil K von 1907 Ann. Phys. (Leipzig)327 867 [9] Planck M 1908 Ann. Phys.331 1 [10] Einstein A 1907 Jahrbuch der Radioaktivität und Elektronik4 411 [11] Ott H 1963 Zeitschrift für Physik 175 70 [12] Arzeliés H 1965 Il Nuovo Cimento B Series 1040 333 [13] Landsberg P T 1966 Nature212 571 [14] Cai H 2021 Eur. Phys. J. C81 673 [15] Papadatos N and Anastopoulos C 2020 Phys. Rev. D102 085005 [16] Cavalleri G and Salgarelli G 1969 Nuovo Cimento A62 722 [17] Costa S S and Matsas G E A 1995 Phys. Lett. A209 155 [18] Landsberg P T and Matsas G E A 1966 Phys. Lett. A223 401 [19] Landsberg P T and Matsas G E A 2004 Physica A340 92 [20] Chattopadhyay P and Paul G 2019 Sci. Rep.9 16967 [21] Bruschi D E, Morris B and Fuentes I 2020 Phys. Lett. A384 126601 [22] Papadatos N 2021 Int. J. Theor. Phys.60 4210 [23] Xu H and Yung M H 2020 Phys. Lett. B801 135201 [24] Gray F and Mann R B 2018 J. High Energ. Phys.2018 174 [25] Nakamura T K 2009 Europhys. Lett.88 20004 [26] Scovil H E D and Schulz-DuBois E O 1959 Phys. Rev. Lett.2 262 [27] Gelbwaser-Klimovsky D, Alicki R and Kurizki G 2013 Phys. Rev. E87 012140 [28] Alicki R 1979 J. Phys. A: Math. Gen.12 L103 [29] Geva E and Kosloff R 1992 J. Chem. Phys.96 3054 [30] Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science299 862 [31] Scully M O, Chapin K R, Dorfman K E, Kim M B and Svidzinsky A 2011 Proc. Natl. Acad. Sci.108 15097 [32] Uzdin R 2016 Phys. Rev. Appl.6 024004 [33] Watanabe G, Venkatesh B P, Talkner P and del Campo 2017 Phys. Rev. Lett.118 050601 [34] Dann R, R and Kosloff R 2020 New J. Phys.22 013055 [35] Feldmann T and Kosloff R 2012 Phys. Rev. E85 051114 [36] Hammam K, Hassouni Y, Fazio R and Manzano G 2021 New J. Phys.23 043024 [37] Zhang T, Liu W T, Chen P X and Li C Z 2007 Phys. Rev. A75 062102 [38] Wang H, Liu S and He J 2009 Phys. Rev. E79 041113 [39] Dillenschneider R and Lutz E 2009 Europhys. Lett.88 50003 [40] He J Z, He X and Zheng J 2012 Chin. Phys. B21 050303 [41] Beau M, Jaramillo J and Del Campo A 2016 Entropy18 168 [42] Li J, Fogarty T, Campbell S, Chen X and Busch T 2018 New J. Phys.20 015005 [43] Chen, YY, Watanabe G, Yu, YC and et al 2019 npj Quantum Inf.5 88 [44] Watanabe G, Venkatesh B P, Talkner P, Hwang M J and del Campo A 2020 Phys. Rev. Lett.124 210603 [45] Jussiau E, Bresque L, Aufféves A, Murch K W and Jordan A N 2022 arXiv: 2208.07225 [quant-ph] [46] Mehta V and Johal R S 2017 Phys. Rev. E96 032110 [47] Peña F J, González A, Nunez A S, Orellana P A, Rojas R G and Vargas P 2017 Entropy19 639 [48] Alvarado Barrios G, Peña FJ, Albarrán-Arriagada F, Vargas P and Retamal J C 2018 Entropy20 767 [49] Erdman P A, Cavina V, Fazio R, Taddei F and Giovannetti V 2019 New J. Phys.21 103049 [50] Deffner S 2018 Entropy20 875 [51] Smith Z, Pal P S and Deffner S 2020 Journal of Non-Equilibrium Thermodynamics45 305 [52] Myers N M and Deffner S 2021 PRX Quantum2 040312 [53] Halpern N Y, White C D, Gopalakrishnan S and Refael G 2019 Phys. Rev. B99 024203 [54] Scully M O 2002 Phys. Rev. Lett.88 050602 [55] Abah O and Lutz E 2017 Europhys. Lett.118 40005 [56] Erdman P A and Noé F 2022 npj Quantum Inf.8 1 [57] Abah O and Lutz E 2014 Europhys. Lett.106 20001 [58] Quan H T, Zhang P and Sun C P 2006 Phys. Rev. E73 036122 [59] Li H, Zou J, Yu W L, Xu B M, Li J G and Shao B 2014 Phys. Rev. E89 052132 [60] Hardal A and Müstecaplhoǧlu Ö 2015 Sci. Rep.5 12953 [61] Dillenschneider R and Lutz E 2009 EPL88 50003 [62] Huang X L, Wang T and Yi X X 2012 Phys. Rev. E86 051105 [63] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett.112 030602 [64] Correa L A, Palao J P, Alonso D and Adesso G 2014 Sci. Rep.4 3949 [65] Long R and Liu W 2015 Phys. Rev. E91 062137 [66] Klaers J, Faelt S, Imamoglu A and Togan E 2017 Phys. Rev. X7 031044 [67] Zhang Y, Guo J and Chen J 2020 Quantum Inf. Process19 268 [68] Zhang Y 2020 Physica A559 125083 [69] Manzano G, Galve F, Zambrini R and Parrondo J M R 2016 Phys. Rev. E93 052120 [70] Leff H S 1987 Am. J. Phys.55 602 [71] Curzon F L and Ahlborn B 1975 Am. J. Phys.43 22 [72] Quan H T, Liu Y X, Sun C P and Nori F 2007 Phys. Rev. E76 031105 [73] Çakmak S 2022 J. Opt. Soc. Am. B39 1209 [74] Scully M O and Zubairy M S 1997 Quantum Opt. (Cambridge University Press) [75] Dung H T and Khanh N Q 1997 J. Mod. Opt.44 1497 [76] Dung H T, Joshi A and Knöll L 2009 J. Mod. Opt.45 1067 [77] Chen J and Yan Z 1996 J. Phys. D: Appl. Phys.29 987 [78] Wu F, Chen L, Sun F, Wu C and Zhu Y 1998 Energy Conversion and Management39 733 [79] Kaushik S C and Kumar S 2000 Energy25 989 [80] Sisman A and Saygin H 2001 Phys. Scr.63 263 [81] Saygin H and Sisman A 2001 J. Appl. Phys.90 3086 [82] Huang Z, Wu F, Chen L, Wu C and Guo F 2002 J. Therm. Sci.11 193 [83] Ahmadi M H, Sayyaadi H and Hosseinzadeh H 2014 Heat Trans. Asian Res.44 347 [84] Ahmadi M H, Ahmadi M A and Pourfayaz F 2015 Eur. Phys. J. Plus130 190 [85] Rao R V, More K C, Taler J and Ocloń P 2016 Sadhana41 1321 [86] Zakine R, Solon A, Gingrich T and Van Wijland F 2017 Entropy19 193 [87] Yong Y, Lingen C and Feng W 2017 Eur. Phys. J. Plus132 45 [88] Yin Y, Chen L and Wu F 2018 Physica A503 58 [89] Enock O, Emmanuel U and Oghenetega A 2020 arXiv: 2010.01581 [quant-ph] [90] Raja S H, Maniscalco S, Paraoanu G S, Pekola J P and Gullo N L 2021 New J. Phys.23 033034 [91] Cruz C, Rastegar-Sedehi H, Anka M F, Oliveira, T R and Reis M 2023 Quantum Sci. Technol.8 035010 [92] Purkait C and Biswas A 2022 Phys. Lett. A442 128180 [93] Xiao Y, Liu D, He J, Liu W and Wang J 2022 arXiv: 2205.13290 [quant-ph] [94] Alicki R and Gelbwaser-Klimovsky D 2015 New J. Phys.17 115012 [95] Huang X L, Wang T and Yi X X 2012 Phys. Rev. E86 051105 [96] Agarwalla B K, Jiang J H and Segal D 2017 Phys. Rev. B96 104304 [97] Galve F and Lutz E 2009 Phys. Rev. A79 055804 [98] Zagoskin A M, Il'ichev E and Nori F 2012 Phys. Rev. A85 063811 [99] Singh V and Müstecaplhoǧlu O E 2020 Phys. Rev. E102 062123 [100] Breuer H P and Petruccione F P 2007 The Theory of Open Quantum Systems (Oxford University Press) [101] Banerjee S and Srikanth R 2008 Eur. Phys. J. D46 335 [102] Ren J, Hänggi P and Li B 2010 Phys. Rev. Lett.104 170601 [103] Chen T, Wang X B and Ren J 2013 Phys. Rev. B87 144303 [104] Wang C, Ren J and Cao J 2017 Phys. Rev. A95 023610 [105] Wang Z, Wang L, Chen J, Chen W and Ren J 2022 Front. Phys.17 13201 [106] Kieu T D 2004 Phys. Rev. Lett.93 140403 [107] Van den Broeck C 2005 Phys. Rev. Lett.95 190602 [108] Abah O, Roßnagel J, Jacob G, Deffner S, Schmidt-Kaler F, Singer K and Lutz E 2012 Phys. Rev. Lett.109 203006 [109] Assis R J, Sales J S, Cunha J A R and Almeida N G 2020 Phys. Rev. E102 052131 [110] Assis R J, Sales J S, Mendes U C and Almeida N G 2021 J. Phys. B: At. Mol. Opt. Phys.54 095501 [111] Arisoy O, Hsiang J T and Hu B L 2022 Phys. Rev. E105 014108 [112] Rezek Y and Kosloff R 2006 New J. Phys.8 83 [113] Marian P and Marian T A 1993 Phys. Rev. A47 4487 [114] Asboth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett.94 173602 [115] Lin B and Chen J 2005 J. Phys. A: Math. Gen.38 69 [116] Huang X L and Wang L C and Yi X X 2013 Phys. Rev. E87 012144 [117] Thomas G and Johal R S 2011 Phys. Rev. E83 031135
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.