Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100701    DOI: 10.1088/1674-1056/acdfbe
GENERAL Prev   Next  

Disturbance observer-based fuzzy fault-tolerant control for high-speed trains with multiple disturbances

Qian-Ling Wang(王千龄)1, Cai-Qing Ma(马彩青)2, and Xue Lin(林雪)2,†
1 School of Artificial Intelligence, Hebei University of Technology, Tianjin 300131, China;
2 College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 260061, China
Abstract  The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances. Based on the novel train model resulting from the Takagi-Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.
Keywords:  fault-tolerant control      high-speed trains      disturbance observer      fuzzy logic  
Received:  21 February 2023      Revised:  29 May 2023      Accepted manuscript online:  20 June 2023
PACS:  07.05.Dz (Control systems)  
  89.40.-a (Transportation)  
  02.40.Ft (Convex sets and geometric inequalities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62203246, 62003127, and 62003183).
Corresponding Authors:  Xue Lin     E-mail:  xlin@qust.edu.cn

Cite this article: 

Qian-Ling Wang(王千龄), Cai-Qing Ma(马彩青), and Xue Lin(林雪) Disturbance observer-based fuzzy fault-tolerant control for high-speed trains with multiple disturbances 2023 Chin. Phys. B 32 100701

[1] Zhang Q, Lusby Ri M, Shang P and Zhu X N 2020 Transport. Res. C 121 102823
[2] Bi M K, He S W and Xu W T 2019 Transport. Res. A 120 165
[3] Mao Z H, Yan X G, Jiang B and Chen M 2020 IEEE Trans. Intellig. Transport. Syst. 21 2449
[4] Gao S G, Dong H R, Ning B, Roberts, Chen L and Sun X B 2015 Chin. Phys. B 24 090506
[5] Bai W Q, Dong, H R, Lü J H and Li Y D 2021 IEEE Trans. Veh. Technol. 70 8556
[6] Bai W Q, Dong H R, Zhang Z X and Li Y D 2021 IEEE Trans. Intellig. Transport. Syst. 23 4331
[7] Zhao H, Dai X W, Ding L, Cui D L, Ding J L and Chai T Y 2021 IEEE Trans. Veh. Technol. 70 12427
[8] Zhao H, Dai X W, Zhang Q and Ding J L 2020 IEEE Trans. Veh. Technol. 69 4700
[9] Yao X M, Park J H, Dong H R, Guo L and L X 2019 IEEE Trans. Syst. Man Cyb.: Syst. 49 2406
[10] Chen Y, Dong H R, Lü J H, Sun X B and Guo L 2016 IEEE Trans. Intellig. Transport. Syst. 17 3035
[11] Yao X M, Wu L G and Guo L 2020 IEEE Trans. Syst. Man Cyb.: Syst. 50 1476
[12] Lin X, Dong H R, Yao X M and Bai W Q 2017 Neurocomputing 260 32
[13] Xi Y G, Yu Y G, Zhang S and Hai X D 2018 Chin. Phys. B 27 010202
[14] Gao S G, Dong H R, Chen Y, Ning B, Chen G R and Yang X X 2013 IEEE Trans. Intellig. Transport. Syst. 14 1733
[15] Luo H Y, Xu H Z, Zhang W J and Gui L Q 2014 Sensors & Transducers 176 249
[16] Liu S K, Jiang B, Mao Z H and Ding S X 2019 Int. J. Control Autom. 17 1408
[17] Bai W Q, Lin Z L, Dong H R and Ning B 2019 IEEE Trans. Intellig. Transport. Syst. 20 2750
[18] Song Y D, Song Q and Cai W C 2014 IEEE Trans. Intellig. Transport. Syst. 15 737
[19] Zhou Y H and Zhang Z L 2014 Vehicle Syst. Dyn. 52 637
[20] Dong H R, Lin X, Gao S G, Cai B G and Ning B 2020 IEEE Trans. Veh. Technol. 69 1353
[21] Takagi T and Sugeno M 1985 IEEE Trans. Syst. Man Cyb.: Syst. 15 116
[22] Lu Q, Shi P, Lam H K and Zhao Y X 2015 IEEE Trans. Fuzzy Syst. 23 2317
[23] Tong S C, Sun K K and Sui S 2018 IEEE Trans. Fuzzy Syst. 26 2
[24] Li Y M, Sun K K and Tong S C 2019 IEEE Trans. Cyb. 49 2
[25] Song X N, Fu Z M and Liu L P 2012 Chin. Phys. B 21 118701
[26] Tseng C S, Chen B S and Uang H J 2001 IEEE Trans. Fuzzy Syst. 9 381
[27] Wu H N, Feng S, Liu Z Y and Guo L 2017 Fuzzy Set. Syst. 306 118
[28] Tuan H D, Apkarian P, Narikiyo T and Yamamoto Y2001 IEEE Trans. Fuzzy Syst. 9 324
[29] Nguang S K and Shi P 2003 IEEE Trans. Fuzzy Syst. 11 331
[30] Ye D and Yang G H 2006 IEEE Trans. Control Syst. Technol. 14 1088
[31] Zhou Q, Shi P, Lu J J and Xu S Y 2011 IEEE Trans. Fuzzy Syst. 19 972
[32] Han J, Zhang H G, Wang Y C and Liu Y 2015 ISA Trans. 59 114
[33] Taisu I A, Liu Z G, Yan Q X, Chen H, Hu K T and Wu S Q 2020 IEEE Trans. Veh. Technol. 70 303
[34] Gao S, Li M J, Zheng Y, Zhao N and Dong H 2022 IEEE Trans. Intellig. Transport. Syst. 23 17966
[35] Dong H R, Lin X, Yao X M, Bai W Q and Ning B 2018 Asian J. Control 20 735
[36] Anderson P M and Bose A 1983 IEEE Trans. Power Apparatus Syst. 12 3791
[37] Mao Z H, Tao G, Jiang B and Yan X G 2018 IEEE Trans. Veh. Technol. 67 5706
[38] Gao S G, Dong H R, Ning B, Chen Y and Sun X B 2015 Neural Comput. Appl. 26 141
[39] Lin X, Dong H R, Yao X M and Cai B G 2018 Vehicle Syst. Dyn. 56 1717
[40] Wei L L and Chen M 2022 Appl. Math. Comput. 433 127362
[41] Guo L and Chen W H 2005 Int. J. Robust Nonlin. 15 109
[42] Wei X J and Guo L 2010 Int. J. Robust Nonlin. 20 106
[43] Yao X M, Park J H, Wu L G and Guo L 2019 IEEE Trans. Automat. Control 64 2875
[1] Distributed dynamic event-based finite-time dissipative synchronization control for semi-Markov switched fuzzy cyber-physical systems against random packet losses
Xiru Wu(伍锡如), Yuchong Zhang(张煜翀), Tiantian Zhang(张畑畑), and Binlei Zhang(张斌磊). Chin. Phys. B, 2023, 32(10): 100506.
[2] Fixed-time group consensus of second-order multi-agent systems based on event-triggered control
Xiaoshuai Wu(武肖帅), Fenglan Sun(孙凤兰), Wei Zhu(朱伟), and Jürgen Kurths. Chin. Phys. B, 2023, 32(7): 070701.
[3] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[4] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[5] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[6] Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network
Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏). Chin. Phys. B, 2020, 29(5): 050701.
[7] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[8] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[9] Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target
Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯). Chin. Phys. B, 2018, 27(9): 090501.
[10] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[11] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[12] Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Ning Bin (宁滨), Roberts Clive, Chen Lei (陈磊), Sun Xu-Bin (孙绪彬). Chin. Phys. B, 2015, 24(9): 090506.
[13] Rigidity based formation tracking for multi-agent networks
Bai Lu (白璐), Chen Fei (陈飞), Lan Wei-Yao (兰维瑶). Chin. Phys. B, 2015, 24(9): 090206.
[14] Robust output feedback cruise control for high-speed train movement with uncertain parameters
Li Shu-Kai (李树凯), Yang Li-Xing (杨立兴), Li Ke-Ping (李克平). Chin. Phys. B, 2015, 24(1): 010503.
[15] An autobias control system for the electro–optic modulator used in a quantum key distribution system
Chen Wen-Fen (陈文芬), Wei Zheng-Jun (魏正军), Guo Li (郭莉), Hou Li-Yan (侯丽燕), Wang Geng (王赓), Wang Jin-Dong (王金东), Zhang Zhi-Ming (张智明), Guo Jian-Ping (郭建平), Liu Song-Hao (刘颂豪). Chin. Phys. B, 2014, 23(8): 080304.
No Suggested Reading articles found!