Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080401    DOI: 10.1088/1674-1056/acc806
GENERAL Prev   Next  

Shadow thermodynamics of AdS black hole with the nonlinear electrodynamics term

He-Bin Zheng(郑何斌), Ping-Hui Mou(牟平辉), Yun-Xian Chen(陈芸仙), and Guo-Ping Li(李国平)
School of Physics and Astronomy, China West Normal University, Nanchong 637000, China
Abstract  We creatively employ the shadow radius to study the thermodynamics of a charged AdS black hole with a nonlinear electrodynamics (NLED) term. First, the connection between the shadow radius and event horizon is constructed with the aid of the geodesic analysis. It turns out that the black hole shadow radius shows a positive correlation as a function of the event horizon radius. Then in the shadow context, we find that the black hole temperature and heat capacity can be presented by the shadow radius. Further analysis shows that the shadow radius can work similarly to the event horizon in revealing black hole phase transition process. In this sense, we construct the thermal profile of the charged AdS black hole with inclusion of the NLED effect. In the P<Pc case, it is found that the N-type trend of the temperature given by the shadow radius is always consistent with that obtained by using the event horizon. Thus, we can conclude for the charged AdS black hole that the phase transition process can be intuitively presented as the thermal profile in the shadow context. Finally, the effects of NLED are carefully analyzed.
Keywords:  AdS black hole      the nonlinear electrodynamics      shadow thermodynamics  
Received:  08 February 2023      Revised:  07 March 2023      Accepted manuscript online:  28 March 2023
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.50.Kd (Modified theories of gravity)  
  04.70.-s (Physics of black holes)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11903025), the Starting Fund of China West Normal University (Grant No.18Q062), the Sichuan Youth Science and Technology Innovation Research Team (Grant No.21CXTD0038), the Chongqing Science and Technology Bureau (Grant No.csts2022ycjh-bgzxm0161), and the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1833).
Corresponding Authors:  Guo-Ping Li     E-mail:  gpliphys@yeah.net

Cite this article: 

He-Bin Zheng(郑何斌), Ping-Hui Mou(牟平辉), Yun-Xian Chen(陈芸仙), and Guo-Ping Li(李国平) Shadow thermodynamics of AdS black hole with the nonlinear electrodynamics term 2023 Chin. Phys. B 32 080401

[1] Abbott B P et al. (LIGO Scientific, Virgo) 2016 Phys. Rev. Lett. 116 061102
[2] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L1
[3] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett.875 L2
[4] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L3
[5] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L4
[6] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L5
[7] Akiyama K et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L6
[8] Bozza V 2010 Gen. Rel. Grav. 42 2269
[9] Perlick V and Tsupko O Y 2022 Phys. Rep. 947 1
[10] Synge J L 1966 Mon. Not. R. Astron. Soc. 131 463
[11] Bardeen J M, Press W H and Teukolsky S A 1972 Astrophys. J. 178 347
[12] Broderick A E, Pesce D W, Gold R, et al. 2022 Astrophys. J. 935 61
[13] Wang H M and Wei S W 2022 Eur. Phys. J. Plus 137 571
[14] Shao W W, Cheng P, Zhong Y and Zhou X N 2015 J. Cosmol. Astropart. Phys. 08 004
[15] Shao W W, Zou Y C, Liu Y X and Mann R B 2019 J. Cosmol. Astropart. Phys. 08 030
[16] Chen S B, Wang M Z and Jing J L 2020 J. High Energy Phys. 07 054
[17] Zeng X X, Zhang H Q and Zhang H B 2020 Eur. Phys. J. C 80 872
[18] Zeng X X and Zhang H Q 2020 Eur. Phys. J. C 80 1058
[19] Peng J, Guo M Y and Feng X H 2021 Phys. Rev. D 104 124010
[20] Li G P and He K J 2021 J. Cosmol. Astropart. Phys. 06 037
[21] Zhou X, Chen S B and Jing J L 2022 Sci. China Phys. Mech. Astron. 65 250411
[22] Zeng X X, He K J and Li G P 2022 Sci. China Phys. Mech. Astron. 65 290411
[23] Li G P and He K J 2021 Eur. Phys. J. C 81 1018
[24] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D 104 024003
[25] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D 104 044049
[26] Hou Y H, Liu P, Guo M Y, Yan H P and Chen B 2022 Class. Quant. Grav. 39 194001
[27] Guo W D, Wei S W and Liu Y X 2022 arXiv: 2203.13477 [gr-qc]
[28] Wang H M, Lin Z C and Wei S W 2022 Nucl. Phys. B 985 116026
[29] Hou Y H, Zhang Z Y, Yan H P, Guo M Y and Chen B 2022 Phys. Rev. D 106 064058
[30] Qin X, Chen S B, Zhang Z L and Jing J L 2022 Astrophys. J. 938 2
[31] Chen Y Q, Guo G Z, Wang P, Wu H W and Yang H T 2022 Sci. China Phys. Mech. Astron. 65 120412
[32] Hawking S W 1975 Commun. Math. Phys. 43 199
[33] Kubizňók D and Mann R B 2012 J. High Energy Phys. 07 033
[34] Cai R G, Cao L M, Li L and Yang R Q 2013 J. High Energy Phys. 9 1
[35] He K J, Hu X Y and Zeng X X 2019 Chin. Phys. C 43 125101
[36] Ökcü Ö and Aydiner E 2017 Eur. Phys. J. C 77 24
[37] Guo S, Han Y and Li G P 2020 Class. Quant. Grav. 37 085016
[38] Guo S, Huang Y L, He K J and Li G P 2021 Mod. Phys. Lett. A 36 2150108
[39] Wei S W, Wang Y Q, Liu Y X and Mann R B N 2021 Sci. China Phys. Mech. Astron. 64 270411
[40] Zhang M and Guo M Y 2020 Eur. Phys. J. C 80 790
[41] Belhaj A, Chakhchi L, E1 Moumni H, Khalloufi J and Masmar K 2020 Int. J. Mod. Phys. A 35 2050170
[42] Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Phys. Rev. D 60 064018
[43] Gunasekaran S, Kubiznak D and Mann R B 2012 J. High Energy Phys. 11 110
[44] Belhaj A, Chabab M, E1 Moumni H and Sedra M B 2012 Chin. Phys. Lett. 29 100401
[45] Hendi S H and Vahidinia M H 2013 Phys. Rev. D 88 084045
[46] Liu Y Q, Zou D C and Wang B 2014 J. High Energy Phys. 09 179
[47] Wei S W and Liu Y X 2015 Phys. Rev. Lett. 115 111302
[48] Zhang J L, Cai R G and Yu H W 2015 Phys. Rev. D 91 044028
[49] Belhaj A, Chabab M, Moumni H E1, Masmar K, Sedra M B and Segui A 2015 J. High Energy Phys. 05 149
[50] Chabab M, E1 Moumni H and Masmar K 2016 Eur. Phys. J. C 76 304
[51] Chabab M, E1 Moumni H, Iraoui S and Masmar K 2016 Eur. Phys. J. C 76 676
[52] Zou D C, Liu Y Q and Yue R H 2017 Eur. Phys. J. C 77 365
[53] Wei S W and Liu Y X 2018 Phys. Rev. D 97 104027
[54] Chabab M, E1 Moumni H, Iraoui S, Masmar K and Zhizeh S 2018 Phys. Lett. B 781 316
[55] Perlick V, Tsupko O Y and Bisnovatyi-Kogan G S 2018 Phys. Rev. D 97 104062
[56] Zhang M, Yue R H and Yang Z Y 2015 Chin. Phys. Lett. 32 20401
[57] Ma M S and Zhao R 2015 Chin. Phys. Lett. 32 30401
[58] Singh T I 2015 Chin. Phys. B 24 070401
[59] Ye B B, Chen J H and Wang Y J 2017 Chin. Phys. B 26 090202
[60] Hu X Y, He K J, Li Z H and Li G P 2020 Chin. Phys. B 29 050401
[61] Guo S, Li G R and Li G P 2022 Chin. Phys. C 46 095101
[62] Novello M, De Lorenci V A, Salim J M and Klippert R 2000 Phys. Rev. D 61 045001
[63] Allahyari A, Khodadi M, Vagnozzi S and Mota D F 2020 J. Cosmol. Astropart. Phys. 02 003
[64] Zeng X X, He K J, Li G P, Liang E W and Guo S 2022 Eur. Phys. J. C 82 764
[65] Yu S and Gao C J 2020 Int. J. Mod. Phys. D 29 2050032
[66] De Lorenci V A, Klippert R, Novello M and Salim J M 2000 Phys. Lett. B 482 134
[67] Kruglov S I 2020 Mod. Phys. Lett. A 35 2050291
[68] Cai X C and Miao Y G 2021 arXiv:2107.08352 [gr-qc]
[69] Wang C, Wu B, Xu Z M and Yang W L 2022 Nucl. Phys. B 976 115698
[70] Eiroa E F and Sendra C M 2018 Eur. Phys. J. C 78 91
[1] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[2] A note on the mass of Kerr-AdS black holes in the off-shell generalized ADT formalism
Yi-De Jing(景艺德), Jun-Jin Peng(彭俊金). Chin. Phys. B, 2017, 26(10): 100401.
[3] Thermodynamical quantities around a RNAdS black hole
Mi Li-Qin (米丽琴), Li Zhong-Heng (黎忠恒). Chin. Phys. B, 2006, 15(6): 1184-1189.
No Suggested Reading articles found!