|
|
Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach |
Xu-Min Chen(陈许敏)1, Chen Wang(王晨)2 |
1 Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract We investigate full counting statistics of quantum heat transfer in a collective-qubit system constructed by multi-qubits interacting with two thermal baths. The nonequilibrium polaron-transformed Redfield approach embedded with an auxiliary counting field is applied to obtain the steady state heat current and fluctuations, which enables us to study the impact of the qubit-bath interaction in a wide regime. The heat current, current noise, and skewness are all found to clearly unify the limiting results in the weak and strong couplings. Moreover, the superradiant heat transfer is clarified as a system-size-dependent effect, and large number of qubits dramatically suppress the nonequilibrium superradiant signature.
|
Received: 27 December 2018
Revised: 07 February 2019
Accepted manuscript online:
|
PACS:
|
05.60.Gg
|
(Quantum transport)
|
|
44.10.+i
|
(Heat conduction)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874011 and 11704093). |
Corresponding Authors:
Chen Wang
E-mail: wangchenyifang@gmail.com
|
Cite this article:
Xu-Min Chen(陈许敏), Chen Wang(王晨) Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach 2019 Chin. Phys. B 28 050502
|
[1] |
Haug H and Jauho A P 2008 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin Heidelberg: Springer-Verlag)
|
[2] |
Kosloff R 2013 Entropy 15 2100
|
[3] |
Nitzan A 2014 Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems (Oxford: Oxford University Press)
|
[4] |
Mohseni M, Omar Y, Engel G S and Plenio M B 2014 Quantum Effects in Biology (Cambridge: Cambridge University Press)
|
[5] |
Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
|
[6] |
Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
|
[7] |
Ren J and Li B 2015 AIP Advances 5 053101
|
[8] |
Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
|
[9] |
Li B, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
|
[10] |
Wang L and Li B 2007 Phys. Rev. Lett. 99 177208
|
[11] |
Wang L and Li B 2008 Phys. Rev. Lett. 101 267203
|
[12] |
Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
|
[13] |
Wang C, Chen X M, Sun K W and Ren J 2018 Phys. Rev. A 97 052112
|
[14] |
Segal D 2008 Phys. Rev. Lett. 101 260601
|
[15] |
Sothmann B and Büttiker M 2012 Europhys. Lett. 99 27001
|
[16] |
Ren J and Zhu J X 2013 Phys. Rev. B 88 094427
|
[17] |
Craven G T and Nitzan A 2016 Proc. Natl. Acad. Sci. USA 113 9421
|
[18] |
Craven G T and Nitzan A 2017 Phys. Rev. Lett. 118 207201
|
[19] |
Segal D and Nitzan A 2005 Phys. Rev. Lett. 94 034301
|
[20] |
Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
|
[21] |
Ao P and Rammer J 1989 Phys. Rev. Lett. 62 3004
|
[22] |
Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific)
|
[23] |
Segal D 2006 Phys. Rev. B 73 205415
|
[24] |
Galperin M, Nitzan A and Ratner M A 2007 Phys. Rev. B 75 155312
|
[25] |
Velizhanin K A, Wang H B and Thoss M 2008 Chem. Phys. Lett. 460 325
|
[26] |
Saito K and Kato T 2013 Phys. Rev. Lett. 111 214301
|
[27] |
Yao Y 2015 Phys. Rev. B 91 045421
|
[28] |
Taylor E and Segal D 2015 Phys. Rev. Lett. 114 220401
|
[29] |
Kato A and Tanimura Y 2015 J. Chem. Phys. 143 064107
|
[30] |
Kato A and Tanimura Y 2016 J. Chem. Phys. 145 224105
|
[31] |
Xu D Z and Cao J S 2016 Front. Phys. 11 110308
|
[32] |
Wang C, Ren J and Cao J S 2017 Phys. Rev. A 95 023610
|
[33] |
Liu J J, Xu H, Li B and Wu C Q 2017 Phys. Rev. E 96 012135
|
[34] |
Ferialdi L 2017 Phys. Rev. A 95 020101
|
[35] |
Ren J, Hänggi P and Li B 2010 Phys. Rev. Lett. 104 170601
|
[36] |
Nicolin L and Segal D 2011 J. Chem. Phys. 135 164106
|
[37] |
Nicolin L and Segal D 2011 Phys. Rev. B 84 161414
|
[38] |
Chen T, Wang X B and Ren J 2013 Phys. Rev. B 87 144303
|
[39] |
Segal D 2014 Phys. Rev. E 90 012148
|
[40] |
Wang C, Ren J and Cao J S 2015 Sci. Rep. 5 11787
|
[41] |
Xu D Z, Wang C, Zhao Y and Cao J S 2016 New J. Phys. 18 023003
|
[42] |
Vogl M, Schaller G and Brandes T 2011 Annals of Physics 326 2827
|
[43] |
Vogl M, Schaller G, Schöll E and Brandes T 2012 Phys. Rev. A 86 033820
|
[44] |
Wang C and Sun K W 2015 Annals of Physics 362 703
|
[45] |
Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
|
[46] |
Campisi M, Hänggi P and Talkner P 2011 Rev. Mod. Phys. 83 771
|
[47] |
Nazir A 2009 Phys. Rev. Lett. 103 146404
|
[48] |
Jang Seogjoo, Berkelbach T C and Reichman D R 2013 New J. Phys. 15 105020
|
[49] |
Lee C K, Moix J and Cao J S 2015 J. Chem. Phys. 142 164103
|
[50] |
McCutcheon D P S and Nazir A 2013 Phys. Rev. Lett. 110 217401
|
[51] |
Jang S 2011 J. Chem. Phys. 135 034105
|
[52] |
McCutcheon D P S and Nazir A 2011 Phys. Rev. B 83 165101
|
[53] |
Silbey R and Harris R 1984 J. Chem. Phys. 80 2615
|
[54] |
Harris R and Silbey R 1985 J. Chem. Phys. 83 1069
|
[55] |
Friedman H M, Agarwalla B K and Segal D 2018 New J. Phys. 20 083026
|
[56] |
Lambert N, Emary C and Brandes T 2004 Phys. Rev. Lett. 92 073602
|
[57] |
Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
|
[58] |
Hardal A Ü C and Müstecaplioğlu Ö E 2015 Sci. Rep. 5 12953
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|