|
|
Energy cooperation in quantum thermoelectric systems withmultiple electric currents |
Yefeng Liu(刘叶锋)1, Jincheng Lu(陆金成)1, Rongqian Wang(王荣倩)1, Chen Wang(王晨)2, Jian-Hua Jiang(蒋建华)1 |
1 School of Physical Science and Technology, Soochow University, Suzhou 215006, China; 2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract The energy efficiency and output power of a quantum thermoelectric system with multiple electric currents and only one heat current are studied. The system is connected to the hot heat bath (cold bath) through one terminal (multiple terminals). In such configurations, there are multiple thermoelectric effects coexisting in the system. Using the Landauer-Büttiker formalism, we show that the cooperation between the two thermoelectric effects in the three-terminal thermoelectric systems can lead to markedly improved performance of the heat engine. Such improvement also occurs in four-terminal thermoelectric heat engines with three output electric currents. Cooperative effects in these multi-terminal thermoelectric systems can considerably enlarge the physical parameter region that realizes high energy efficiency and output power. For refrigeration, we find that the energy efficiency can also be substantially improved by exploiting the cooperative effects in multi-terminal thermoelectric systems. All these results reveal a useful approach toward high-performance thermoelectric energy conversion in multi-terminal mesoscopic systems.
|
Received: 27 January 2020
Revised: 27 February 2020
Accepted manuscript online:
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
84.60.-h
|
(Direct energy conversion and storage)
|
|
88.05.De
|
(Thermodynamic constraints on energy production)
|
|
88.05.Bc
|
(Energy efficiency; definitions and standards)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675116 and 11704093), the Jiangsu Specially-Appointed Professor Funding, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China. |
Corresponding Authors:
Jincheng Lu, Jian-Hua Jiang
E-mail: jincheng.lu1993@gmail.com;jianhuajiang@suda.edu.cn
|
Cite this article:
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华) Energy cooperation in quantum thermoelectric systems withmultiple electric currents 2020 Chin. Phys. B 29 040504
|
[1] |
Dubi Y and Ventra M Di 2011 Rev. Mod. Phys. 83 131
|
[2] |
Sothmann B, Sánchez R and Jordan A N 2015 Nanotechnology 26 032001
|
[3] |
Jiang J H and Imry Y 2016 C. R. Phys. 17 1047
|
[4] |
Thierschmann H, and Sánchez R, Sothmann B, Buhmann H and Molenkamp L W, 2016 C. R. Phys. 17 1109
|
[5] |
Benenti G, Casati G, Saito K and Whitney R S 2017 Phys. Rep. 694 1
|
[6] |
Sánchez D and Serra L 2011 Phys. Rev. B 84 201307
|
[7] |
Sothmann B, Sánchez R, Jordan A N and Büttiker M 2013 New J. Phys. 15 095021
|
[8] |
Jiang J H, Entin-Wohlman O and Imry Y 2013 Phys. Rev. B 87 205420
|
[9] |
Jiang J H, Entin-Wohlman O and Imry Y 2013 New J. Phys. 15 075021
|
[10] |
Zhang Y, Zhang X, Ye Z, Lin G and Chen J 2017 Appl. Phys. Lett. 110 153501
|
[11] |
Jiang J H, Kulkarni M, Segal D and Imry Y 2015 Phys. Rev. B 92 045309
|
[12] |
Lu J, Wang R, Ren J, Kulkarni M and Jiang J H 2019 Phys. Rev. B 99 035129
|
[13] |
Goury D and Sánchez R 2019 Appl. Phys. Lett. 115 092601
|
[14] |
Wang C, Xu D, Liu H and Gao X 2019 Phys. Rev. E 99 042102
|
[15] |
Wang R, Lu J, Wang C and Jiang J H 2018 Sci. Rep. 8 2607
|
[16] |
Mani A and Benjamin C 2018 Phys. Rev. E 97 022114
|
[17] |
Mani A and Benjamin C 2019 J. Phys. Chem. C 123 22858-22864
|
[18] |
Sánchez D, Sánchez R, López R and Sothmann B 2019 Phys. Rev. B 99 245304
|
[19] |
Zhang Y, Guo J and Chen J 2020 Physica E 118 113874
|
[20] |
Simine L and Segal D 2012 Phys. Chem. Chem. Phys. 14 13820
|
[21] |
Entin-Wohlman O, Imry Y and Aharony A 2010 Phys. Rev. B 82 115314
|
[22] |
Sánchez R and Büttiker M 2011 Phys. Rev. B 83 085428
|
[23] |
Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412
|
[24] |
Whitney R S 2014 Phys. Rev. B 112 130601
|
[25] |
Entin-Wohlman O, Jiang J H and Imry Y 2014 Phys. Rev. E 89 012123
|
[26] |
Mazza F, Valentini S, Bosisio R, Benenti G, Giovannetti V, Fazio R and Taddei F 2015 Phys. Rev. B 91 245435
|
[27] |
Sánchez R, Sothmann B and Jordan A N 2015 Phys. Rev. Lett. 114 146801
|
[28] |
Entin-Wohlman O, Imry Y and Aharony A 2015 Phys. Rev. B 91 054302
|
[29] |
Agarwalla B K, Jiang J H and Segal D 2015 Phys. Rev. B 92 245418
|
[30] |
Yamamoto K, Entin-Wohlman O, and Aharony A and Hatano N 2016 Phys. Rev. B 94 121402
|
[31] |
Shiraishi N, Saito K and Tasaki H, 2016 Phys. Rev. Lett. 117 190601
|
[32] |
Mani A and Benjamin C 2017 Phys. Rev. E 96 032118
|
[33] |
Agarwalla B K, Jiang J H and Segal D 2017 Phys. Rev. B 96 104304
|
[34] |
Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422
|
[35] |
Hussein R, Governale M, Kohler S, Belzig W, Giazotto F and Braggio A 2019 Phys. Rev. B 99 075429
|
[36] |
Hwang S Y, Sánchez D, Lee M and López R 2013 New J. Phys. 15 105012
|
[37] |
Matthews J, Battista F, Sánchez D, Samuelsson P and Linke H 2014 Phys. Rev. B 90 165428
|
[38] |
Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H and Molenkamp L W 2014 Nat. Nanotech. 10 854
|
[39] |
Cui L, Miao R, Wang K, Thompson D, Zotti L A, Cuevas J C, Meyhofer E and Reddy P 2018 Nat. Nanotech. 13 122
|
[40] |
Josefsson M, Svilans A, Burke A M, Hoffmann E A, Fahlvik S, Thelander C, Leijnse M and Linke H 2018 Nat. Nanotech. 13 920
|
[41] |
Jaliel G, Puddy R K, Sánchez R, Jordan A N, Sothmann B, Farrer I, Griffiths J P, Ritchie D A and Smith C G 2019 Phys. Rev. Lett. 123 117701
|
[42] |
Josefsson M, Svilans A, Linke H and Leijnse M 2019 Phys. Rev. B 99 235432
|
[43] |
Prete D, Erdman P A, Demontis V, Zannier V, Ercolani D, Sorba L, Beltram F, Rossella F, Taddei F and Roddaro S 2019 Nano Lett. 19 3033
|
[44] |
Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
|
[45] |
Jiang J H 2014 J. Appl. Phys. 116 194303
|
[46] |
Lu J, Wang R, Liu Y and Jiang J H 2017 J. Appl. Phys. 122 044301
|
[47] |
Saito K, Benenti G, Casati G and Prosen T 2011 Phys. Rev. B 84 201306
|
[48] |
Büttiker M 1988 IBM J. Res. Dev. 32 63
|
[49] |
Jiang J H, Agarwalla B K and Segal D 2015 Phys. Rev. Lett. 115 040601
|
[50] |
Jiang J H 2014 Phys. Rev. E 90 042126
|
[51] |
Jiang J H and Imry Y 2017 Phys. Rev. Applied 7 064001
|
[52] |
Sivan U and Imry Y 1986 Phys. Rev. B 33 551
|
[53] |
Butcher P N 1990 J. Phys.: Condens. Matter 2 4869
|
[54] |
Mazza F, Bosisio R, Benenti G, Giovannetti V, Fazio R and Taddei F 2015 New J. Phys. 16 085001
|
[55] |
Benenti G, Saito K and Casati G 2011 Phys. Rev. Lett. 106 230602
|
[56] |
Van den Broeck C 2005 Phys. Rev. Lett. 95 190602
|
[57] |
Golubeva N and Imparato A 2012 Phys. Rev. Lett. 109 190602
|
[58] |
Proesmans K, Cleuren B and Van den Broeck C 2016 Phys. Rev. Lett. 116 220601
|
[59] |
Lu J, Liu Y, Wang R, Wang C and Jiang J H 2019 Phys. Rev. B 100 115438
|
[60] |
Büttiker M 1986 Phys. Rev. Lett. 57 1761
|
[61] |
Hofer P P and Sothmann B 2015 Phys. Rev. B 91 195406
|
[62] |
Brandner K and Seifert U 2013 New J. Phys. 15 105003
|
[63] |
Sánchez R, Sothmann B and Jordan A N 2016 Physica E 75 86
|
[64] |
Brandner K, Hanazato T and Saito K 2018 Phys. Rev. Lett. 120 090601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|