Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088503    DOI: 10.1088/1674-1056/27/8/088503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Time-dependent crosstalk effects for image sensors with different isolation structures

Lei Shen(沈磊), Li-Qiao Liu(刘力桥), Hao Hao(郝好), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦)
Institute of Microelectronics, Peking University, Beijing, China
Abstract  Photo-generated carriers may diffuse into the adjacent cells to form the electrical crosstalk, which is especially noticeable after the pixel cell size has been scaled down. The electrical crosstalk strongly depends on the structure and electrical properties of the photosensitive areas. In this work, time-dependent crosstalk effects considering different isolation structures are investigated. According to the different depths of photo-diode (PD) and isolation structure, the transport of photo-generated carriers is analyzed with different regions in the pixel cell. The evaluation of crosstalk is influenced by exposure time. Crosstalk can be suppressed by reducing the exposure time. However, the sensitivity and dynamic range of the image sensor need to be considered as well.
Keywords:  image sensor      crosstalk      pixel isolation  
Received:  22 February 2018      Revised:  16 April 2018      Accepted manuscript online: 
PACS:  85.60.-q (Optoelectronic devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. NKRDP 2016YFA0202101).
Corresponding Authors:  Xiao-Yan Liu     E-mail:  xyliu@ime.pku.edu.cn

Cite this article: 

Lei Shen(沈磊), Li-Qiao Liu(刘力桥), Hao Hao(郝好), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦) Time-dependent crosstalk effects for image sensors with different isolation structures 2018 Chin. Phys. B 27 088503

[1] Willner A E, Byer R L, Chang-Hasnain C J, Forrest S R, Kressel H, Kogelnik H, Kogelnik H, Tearney G J, Townes C H and Zervas M N 2012 Proc. IEEE 100 1604
[2] Lei C, Ozeki Y and Goda K 2017 Proceedings of the International Image Sensor Workshop, May 30-June 2, 2017, Hiroshima, Japan, I2
[3] Tanioka K 2017 Proceedings of the International Image Sensor Workshop, May 30-June 2, 2017, Hiroshima, Japan, I3
[4] Miyazaki S 2017 Proceedings of the International Image Sensor Workshop, May 30-June 2, 2017, Hiroshima, Japan, I4
[5] Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L and He C F 2016 Acta Phys. Sin. 65 024212 (in Chinese)
[6] Chen C, Bing Z, Wu L S, Li N and Wang J F 2014 Chin. Phys. B 23 124215
[7] Tournier A, Leverd F, Favennec L, Perrot C, Pinzelli L, Gatefait M, Cherault N, JeanJean D, Carrere J P, Hirigoyen F, Grant L and Roy F 2011 Proceedings of the International Image Sensor Workshop, June 8-June 11, 2011, Hokkaido, Japan, R5
[8] Kitamura Y, Aikawa H, Kakehi K, Yousyou T, Eda K, Minami T, Uya S, Takegawa Y, Yamashita H, Kohyama Y and Asami T 2012 Digest of IEEE International Electron Devices Meeting, December 10-12, 2012, San Francisco, USA, 24.2.1
[9] Sukegawa S, Umebayashi T, Nakajima T, Kawanobe H, Koseki K, Hirota I, Haruta T, Kasai M, Fukumoto K, Wakano T, Inoue K, Takahashi H, Nagano T, Nitta Y, Hirayama T and Fukushima N 2013 Digest of IEEE International Solid-State Circuits Conference, February 17-21, 2013, San Francisco, USA, 484
[10] Choi S, Lim S H, Lim M, Bae H J, Choo K J, Park J H, Lee K S, Kim S S, Moon J, Son K, Shim E S, Cho H, Kim Y, Ham S H, Ahn J C, Moon C R and Lee D 2015 Proceedings of the International Image Sensor Workshop, June 8-11, 2015, Vaals, Netherlands, I4
[11] Kato Y, Sano T, Moriyama Y, Maeda S, Yamazaki T, Nose A, Shina K, Yasu Y, Tempel W, Ercan A and Ebiko Y 2017 Proceedings of Symposium of VLSI Circuits, June 5-8, 2017, Kyoto, Japan, C288
[12] Shinohara T, Watanabe K, Arakawa S, Kawashima H, Kawashima A, Abe T, Yanagita T, Ohta K, Inada Y, Onizuka M, Nakayama H, Tateshita Y, Morikawa T, Ohno K, Sugimoto D, Kadomura S and Hirayama T 2013 Digest IEEE International Electron Devices Meeting, December 9-11, 2013, San Francisco, USA, 27.4.1
[13] Park B J, Jung J, Moon C R , Hwang S H, Lee Y W, Kim D W, Paik K H, Yoo J R, Lee D H and Kim K 2007 Jpn. J. Appl. Phys. 46 2454
[14] Choi S, Lee K, Yun J, Choi S, Lee S, Park J, Shim E S, Pyo J, Kim B, Jung M, Lee Y, Son K, Jung S, Wang T S , Choi Y, Min D K , Im J, Moon C R , Lee D and Chang D 2017 Proceedings of Symposium on VLSI Technology, June 5-8, 2017, Kyoto, Japan, T104
[15] Furumiya M, Ohkubo H, Muramatsu Y, Kurosawa S, Okamoto F, Fujimoto Y and Nakashiba Y 2001 IEEE Trans. Electron. Dev. 48 2221
[16] David Y and Efron U 2006 Proceedings of IEEE 24th Convention of Electrical and Electronics Engineers in Israel , November 15-17, 2006, Eilat, Israel, 67
[17] Shcherback I, Danov T and Yadid-Pecht O 2004 IEEE Trans. Electron. Dev. 51 2033
[18] Djite I, Estribeau M, Magnan P, Roll, G, Petit S and Saint-Pe O 2012 IEEE Trans. Electron. Dev. 59 729
[19] Blanco-Filgueira B, López P and Roldán J B 2013 IEEE Trans. Electron. Dev. 60 3459
[20] Blanco-Filgueira B, Martínez P L, Aranda J B R and Hauer J 2015 IEEE Trans. Electron. Dev. 62 580
[21] Synopsys Sentaurus T C A D User's Manual, H-2013.03, 2013
[1] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[2] Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution
Yu Zhang(张钰), Xinmiao Lu(逯鑫淼), Guangyi Wang(王光义), Yongcai Hu(胡永才), Jiangtao Xu(徐江涛). Chin. Phys. B, 2016, 25(7): 070503.
[3] Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach
Jie Hao(郝杰), Ma-li Gong(巩马理), Peng-fei Du(杜鹏飞), Bao-jie Lu(卢宝杰), Fan Zhang(张帆), Hai-tao Zhang(张海涛), Xing Fu(付星). Chin. Phys. B, 2016, 25(7): 074207.
[4] Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating
Kai-Li Li(李凯丽), Jun-Ming An(安俊明), Jia-Shun Zhang(张家顺), Yue Wang(王玥), Liang-Liang Wang(王亮亮), Jian-Guang Li(李建光), Yuan-Da Wu(吴远大), Xiao-Jie Yin(尹小杰), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2016, 25(12): 124209.
[5] Theoretical studies on sRNA-mediated regulation in bacteria
Chang Xiao-Xue (常晓雪), Xu Liu-Fang (徐留芳), Shi Hua-Lin (史华林). Chin. Phys. B, 2015, 24(12): 128703.
[6] Crosstalk elimination in multi-view autostereoscopic display based on polarized lenticular lens array
Wang Zhi-Yuan (王志远), Hou Chun-Ping (侯春萍). Chin. Phys. B, 2015, 24(1): 014213.
[7] Through-silicon-via crosstalk model and optimization design for three-dimensional integrated circuits
Qian Li-Bo (钱利波), Zhu Zhang-Ming (朱樟明), Xia Yin-Shui (夏银水), Ding Rui-Xue (丁瑞雪), Yang Yin-Tang (杨银堂). Chin. Phys. B, 2014, 23(3): 038402.
[8] A quantum efficiency analytical model for complementary metal–oxide–semiconductor image pixels with a pinned photodiode structure
Cao Chen (曹琛), Zhang Bing (张冰), Wu Long-Sheng (吴龙胜), Li Na (李娜), Wang Jun-Feng (王俊峰). Chin. Phys. B, 2014, 23(12): 124215.
[9] A nano-metallic-particles-based CMOS image sensor for DNA detection
He Jin(何进), Su Yan-Mei(苏艳梅), Ma Yu-Tao (马玉涛), Chen Qin(陈沁), Wang Ruo-Nan(王若楠), Ye Yun(叶韵), Ma Yong(马勇), and Liang Hai-Lang(梁海浪) . Chin. Phys. B, 2012, 21(7): 076104.
[10] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[11] Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
Jin Jing(金靖)$†$, Tian Hai-Ting(田海亭), Pan Xiong(潘雄), and Song Ning-Fang(宋凝芳). Chin. Phys. B, 2010, 19(3): 030701.
[12] A CMOS-compatible silicon substrate optimization technique and its application in radio frequency crosstalk isolation
Li Chen(李琛), Liao Huai-Lin (廖怀林),Huang Ru(黄如), and Wang Yang-Yuan (王阳元) . Chin. Phys. B, 2008, 17(7): 2730-2738.
No Suggested Reading articles found!