|
|
Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers |
Zongxia Guo(郭宗夏)1,2, Gregory Malinowski2, Pierre Vallobra1,3, Yi Peng(彭懿)2, Yong Xu(许涌)1,3, Stéphane Mangin2, Weisheng Zhao(赵巍胜)1,3, Michel Hehn2, and Boyu Zhang(张博宇)1,† |
1. Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China; 2. Universit éde Lorraine, CNRS, IJL, Nancy, 54011 France; 3. Hefei Innovation Research Institute, Beihang University, Hefei 230012, China |
|
|
Abstract Antiferromagnets offer great potential for high-speed data processing applications, as they can expend spintronic devices from a static storage and gigahertz frequency range to the terahertz range. However, their zero net magnetization makes them difficult to manipulate and detect. In recent years, there has been a lot of attention given to the ultrafast manipulation of magnetic order using ultra-short single laser pulses, but it remains unknown whether a similar scenario can be observed in antiferromagnets. In this work, we demonstrate the manipulation of antiferromagnets with a single femtosecond laser pulse in perpendicular exchange-biased Co/IrMn/CoGd trilayers. We study the dual exchange bias interlayer interaction in quasi-static conditions and competition in ultrafast antiferromagnet rearrangement. Our results show that, compared to conventional ferromagnetic/antiferromagnetic systems, the IrMn antiferromagnet can be ultrafast and efficiently manipulated by the coupled CoGd ferrimagnetic layer, which paves the way for potential energy-efficient spintronic devices.
|
Received: 23 March 2023
Revised: 29 May 2023
Accepted manuscript online: 01 June 2023
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: The authors gratefully acknowledge the National Key Research and Development Program of China (Grant No.2022YFB4400200), the National Natural Science Foundation of China (Grant Nos.12104030, 12104031, and 61627813), the Program of Introducing Talents of Discipline to Universities (Grant No.B16001), the Beijing Municipal Science and Technology Project (Grant No.Z201100004220002), China Postdoctoral Science Foundation (Grant No.2022M710320), and China Scholarship Council. This work is also supported by the ANR-15-CE24-0009 UMAMI and the ANR-20-CE09-0013, by the Institute Carnot ICEEL for the project "Optic-switch" and Matelas, by the Région Grand Est, by the Metropole Grand Nancy, by the impact project LUE-N4S, part of the French PIA project "Lorraine Université d'Excellence", reference ANR-15-IDEX-04-LUE, and by the "FEDERFSE Lorraine et Massif Vosges 2014-2020", a European Union Program. |
Corresponding Authors:
Boyu Zhang
E-mail: boyu.zhang@buaa.edu.cn
|
Cite this article:
Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇) Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers 2023 Chin. Phys. B 32 087507
|
[1] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 [2] Xiong D, Jiang Y, Shi K, Du A, Yao Y, Guo Z, Zhu D, Cao K, Peng S, Cai W, Zhu D and Zhao W 2022 Fundamental Research 2 522 [3] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904 [4] Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M and Stöhr J 2003 Phys. Rev. Lett. 91 017203 [5] Ali M, Marrows C H, Al-Jawad M, Hickey B J, Misra A, Nowak U and Usadel K D 2003 Phys. Rev. B 68 214420 [6] Xu X Y, Wang M H and Hu J G 2008 Chin. Phys. B 17 1443 [7] Qi X J, Yang N N, Duan X X and Li X Z 2021 Chin. Phys. B 30 107501 [8] Chen Y T 2008 Nanoscale Research Letters 4 90 [9] Morales R, Li Z P, Olamit J, Liu K, Alameda J M and Schuller I K 2009 Phys. Rev. Lett. 102 097201 [10] Xu Y, Ma Q, Cai J W and Sun L 2011 Phys. Rev. B 84 054453 [11] Zhan X Z, Li G, Cai J W, Zhu T, Cooper J F K, Kinane C J and Langridge S 2019 Scientific Reports 9 6708 [12] Nam D N H, Chen W, West K G, Kirkwood D M, Lu J and Wolf S A 2008 Appl. Phys. Lett. 93 152504 [13] Freitas P P, Ferreira R and Cardoso S 2016 Proc. IEEE 104 1894 [14] Guo Z, Yin J, Bai Y, Zhu D, Shi K, Wang G, Cao K and Zhao W 2021 Proc. IEEE 109 1398 [15] Sharma A, Hoffmann M A, Matthes P, Busse S, Selyshchev O, Mack P, Exner H, Horn A, Schulz S E, Zahn D R T and Salvan G 2019 J. Mag. Magn. Mater. 489 165390 [16] Mangin S, Gottwald M, Lambert C H, Steil D, Uhlíř V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M and Fullerton E E 2014 Nat. Mater. 13 286 [17] Lambert C H, Mangin S, Varaprasad B S D Ch S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M and Fullerton E E 2014 Science 345 1337 [18] Wang L, Cheng H, Li P, van Hees Y L W, Liu Y, Cao K, Lavrijsen R, Lin X, Koopmans B and Zhao W 2022 Proc. Natl. Acad. Sci. USA 119 2211953 [19] Vallobra P, Fache T, Xu Y, Zhang L, Malinowski G, Hehn M, Rojas-Sánchez J C, Fullerton E E and Mangin S 2017 Phys. Rev. B 96 144403 [20] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing Th and Kimel A V 2011 Nature 472 205 [21] Guo Z, Wang J, Malinowski G, Zhang B, Zhang W, Wang H, Liu C, Peng Y, Vallobra P, Xu Y, Jenkins S, Chantrell R W, Evans R F L, Mangin S, Zhao W and Hehn M 2023 arXiv:2302.04510 [cond-mat] [22] Malinowski G, Hehn M and Panissod P 2006 J. Phys.: Condens. Matter 18 3385 [23] Moritz J, Vinai G and Dieny B 2012 IEEE Magnetics Letters 3 4000204 [24] Moritz J, Bacher P, Auffret S and Dieny B 2011 J. Magn. Magn. Mater. 323 2391 [25] Castro I L, Nascimento V P, Passamani E C, Takeuchi A Y, Larica C, Tafur M and Pelegrini F 2013 J. Appl. Phys. 113 203903 [26] Dalla Longa F, Kohlhepp J T, de Jonge W J M and Koopmans B 2010 Phys. Rev. B 81 094435 [27] Kumberg I, Golias E, Pontius N, Hosseinifar R, Frischmuth K, Gelen I, Shinwari T, Thakur S, Schüβler-Langeheine C, Oppeneer P M and Kuch W 2020 Phys. Rev. B 102 214418 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|