Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075208    DOI: 10.1088/1674-1056/acc1d7
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Drift surface solver for runaway electron current dominant equilibria during the current quench

Lu Yuan(袁露) and Di Hu(胡地)
School of Physics, Beihang University, Beijing 100191, China
Abstract  Runaway electron current generated during the current quench phase of tokamak disruptions could result in severe damage to future high performance devices. To control and mitigate such runaway electron current, it is important to accurately describe the runaway electron current dominated equilibrium, based on which further stability analysis could be carried out. In this paper, we derive a Grad-Shafranov-like equation solving for the axisymmetric drift surfaces of the runaway electrons instead of the magnetic flux surfaces for the simple case that all runaway electrons share the same parallel momentum. This new equilibrium equation is then numerically solved with simple rectangular wall with ITER-like and MAST-like geometry parameters. The deviation between the drift surfaces and the flux surfaces is readily obtained, and runaway electrons are found to be well confined even in regions with open field lines. The change of the runaway electron parallel momentum is found to result in a horizontal current center displacement without any changes in the total current or the external field. The runaway current density profile is found to affect the susceptibility of such displacement, with flatter profiles result in more displacement by the same momentum change. With up-down asymmetry in the external poloidal field, such displacement is accompanied by a vertical displacement of runaway electron current. It is found that this effect is more pronounced in smaller, compact device and weaker poloidal field cases. The above results demonstrate the dynamics of current center displacement caused by the momentum space change in the runaway electrons, and pave a way for more sophisticated runaway current equilibrium theory in the future with more realistic consideration on the runaway electron momentum distribution. This new equilibrium theory also provides foundation for future stability analysis of the runaway electron current.
Keywords:  tokamak      disruption      runaway electrons      equilibrium  
Received:  30 December 2022      Revised:  17 February 2023      Accepted manuscript online:  07 March 2023
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.-s (Magnetic confinement and equilibrium)  
  52.25.Xz (Magnetized plasmas)  
  52.65.Cc (Particle orbit and trajectory)  
Fund: Project supported by the National MCF Energy Research and Development Program of China (Grant No. 2019YFE03010001) and the National Natural Science Foundation of China (Grant No. 11905004).
Corresponding Authors:  Di Hu     E-mail:  hudi2@buaa.edu.cn

Cite this article: 

Lu Yuan(袁露) and Di Hu(胡地) Drift surface solver for runaway electron current dominant equilibria during the current quench 2023 Chin. Phys. B 32 075208

[1] Lehnen M, Aleynikova K, Aleynikov P B, et al. 2015 J. Nucl. Mater. 463 39
[2] Nygren R, Lutz T, Walsh D, Martin G, Chatelier M, Loarer T and Guilhem D 1997 J. Nucl. Mater. 241-243 522
[3] Gilligan J, Niemer K, Bourham M, Croessmann C, Hankins O, Tallavarjula S, Mohanti R and Orton N 1990 J. Nucl. Mater. 176-177 779
[4] Martín-Solís J R, Loarte A and Lehnen M 2017 Nucl. Fusion 57 066025
[5] Wei Y N 2020 Research on the Suppression and the Dissipation of Runaway Current during Plasma Disruption on the J-TEXT Tokamak (Ph.D. Dissertation) (Hefei: Huazhong University of Science and Technology) (in Chinese)
[6] Paz-Soldan C, Eidietis N W, Liu Y Q, Shiraki D, Boozer A H, Hollmann E M, Kim C C and Lvovskiy A 2019 Plasma Phys. Control. Fusion 61 054001
[7] Papp G, Drevlak M, Fülöp T, Helander P and Pokol G I 2011 Plasma Phys. Control. Fusion 53 095004
[8] Hollmann E M, Parks P B, Commaux N, Eidietis N W, Moyer R A, Shiraki D, Austin M E, Lasnier C J, Paz-Soldan C and Rudakov D L 2015 Phys. Plasmas 22 056108
[9] Gobbin M, Li L, Liu Y Q, Marrelli L, Nocente M, Papp G, Pautasso G, Piovesan P, Valisa M, Carnevale D, Esposito B, Giacomelli L, Gospodarczyk M, McCarthy P J, Martin P, Suttrop W, Tardocchi M, Teschke M, the ASDEX Upgrade Team and the EUROfusion MST1 Team 2018 Plasma Phys. Control. Fusion 60 014036
[10] Cary J R and Brizard A J 2009 Rev. Mod. Phys 81 693
[11] Liu C, Qin H, Eero H, Wang Y L and Liu J 2018 Nucl. Fusion 58 106018
[12] Zakharov L E and Shafranov V D 1986 Equilibrium of current carrying plasmas in toroidal configurations (New York: Plenum Press) p. 164
[13] Galeotti L, Barnes D C, Ceccherini F and Pegoraro F 2011 Phys. Plasmas 18 082509
[14] Goedbloed J P 2005 Phys. Plasmas 12 064701
[15] Sudan R N and Rosenbluth M N 1979 Phys. Fluids 22 282
[16] Hu D and Qin H 2016 Phys. Plasmas 23 032510
[17] Chen F F 2016 Introduction to Plasma Physics and Controlled Fusion, 3rd edn. (Switzerland: Springer International Publishing) p. 222
[18] Miller G and Turner L 1981 Phys. Fluids 24 363
[19] Dudson B 2022 FreeGS: Free boundary Grad-Shafranov solver
[20] Gribov Y, Kavin A, Lukash V, Khayrutdinov R, Huijsmans G T A, Loarte A, Snipes J A and Zabeo L 2015 Nucl. Fusion 55 073021
[21] Riemann J, Smith H M and Helander P 2012 Phys. Plasmas 19 012507
[22] Zhou R J, Hu L Q, Li E Z, Xu M, Zhong G Q, Xu L Q, Lin S Y, Zhang J Z and the EAST Team 2013 Plasma Phys. Control. Fusion 55 055006
[23] István P, Mathias H and Oskar V 2022 J. Plasma Phys. 88 905880409
[24] Wesson J 2011 Tokamaks, 4th edn. (Cambridge: Oxford University Press) pp. 117–119
[25] Hesslow L, Embréus O, Stahl A, DuBois T C, Papp G, Newton S L and Fülöp T 2017 Phys. Rev. Lett. 118 255001
[26] Martín-Solís J R and Sánchez R 2008 Phys. Plasmas 15 112505
[27] Liu C, Eero H, Fu G Y, Brennan D P, Bhattacharjee A and Carlos P S 2018 Phys. Rev. Lett. 120 265001
[1] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[2] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[3] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[4] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[5] Stability impacts from the current and pressure profile modifications within finite sized island
Yuxiang Sun(孙宇翔) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075212.
[6] Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma
Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[7] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[8] Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT
Jin-Yu Xiong(熊金玉), Zhong-He Jiang(江中和), Zi-Xiao Jiao(焦子啸), Zhen Li(李振),Yun-Feng Liang(梁云峰), Zhong-Yong Chen(陈忠勇), Yong-Hua Ding(丁永华), and J-TEXT Team. Chin. Phys. B, 2023, 32(7): 075210.
[9] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[10] Stability analysis of magnetization in a perpendicular magnetic layer driven by spin Hall effect
Zai-Dong Li(李再东), Xin-Xin Zhao(赵欣欣), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2023, 32(5): 057503.
[11] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[12] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[13] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[14] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[15] A rational quantum state sharing protocol with semi-off-line dealer
Hua-Li Zhang(张花丽), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Yu Yang(杨榆), and Xiu-Bo Chen(陈秀波). Chin. Phys. B, 2022, 31(5): 050309.
No Suggested Reading articles found!