Special Issue:
SPECIAL TOPIC — Plasma disruption
|
SPECIAL TOPIC—Plasma disruption |
Prev
Next
|
|
|
Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas |
Chen-Xi Luo(罗晨曦)1,2, Long Zeng(曾龙)3,†, Xiang Zhu(朱翔)4,‡, Tian Tang(唐天)1,2, Zhi-Yong Qiu(仇志勇)5, Shi-Yao Lin(林士耀)1, Tao Zhang(张涛)1, Hai-Qing Liu(刘海庆)1, Tong-Hui Shi(石同辉)1, Bin Zhang(张斌)1, Rui Ding(丁锐)1, Wei Gao(高伟)1, Min-Rui Wang(王敏锐)1,2, Wei Gao(高伟)1, Ang Ti(提昂)1, Hai-Lin Zhao(赵海林)1, Tian-Fu Zhou(周天富)1, Jin-Ping Qian(钱金平)1, You-Wen Sun(孙有文)1, Bo Lv(吕波)1, Qing Zang(臧庆)1, Yin-Xian Jie(揭银先)1, Yun-Feng Liang(梁云峰)1,6, and Xiang Gao(高翔)1 |
1 Institute of Plasma Physics, Hefei Institutes of Physics Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230031, China; 3 Department of Engineering Physics, Tsinghua University, Beijing 100084, China; 4 Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China; 5 Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310000, China; 6 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research Plasma Physics(IEK-4), Jülich 52425, Germany |
|
|
Abstract The generation of runaway electrons (REs) is observed during the low-density helium ohmic plasma discharge in the Experimental Advanced Superconducting Tokamak (EAST). The growth rate of hard x-ray (HXR) is inversely proportional to the line-average density. Besides, the RE generation in helium plasma is higher than that in deuterium plasma at the same density, which is obtained by comparing the growth rate of HXR with the same discharge conditions. The potential reason is the higher electron temperature of helium plasma in the same current and electron density plateau. Furthermore, two Alfvén eigenmodes driven by REs have been observed. The frequency evolution of the mode is not fully satisfied with the Alfvén scaling and when extension of the Alfvén frequency is towards 0, the high frequency branch is ~ 50 kHz. The different spatial position of the two modes and the evolution of the helium concentration could be used to understand deviation between theoretical and experimental observation.
|
Received: 06 October 2022
Revised: 18 November 2022
Accepted manuscript online: 16 December 2022
|
PACS:
|
52.25.Xz
|
(Magnetized plasmas)
|
|
52.70.Nc
|
(Particle measurements)
|
|
52.35.Bj
|
(Magnetohydrodynamic waves (e.g., Alfven waves))
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFE0301205 and 2022YFE03050003), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y2021116), the National Natural Science Foundation of China (Grant Nos. 12005262, 12105186, 12175277, and 11975271), and the Users of Excellence Program of Hefei Science Center CAS (Grant No. 2021HSC-UE016). |
Corresponding Authors:
Long Zeng, Xiang Zhu
E-mail: zenglong@tsinghua.edu.cn;xzhu@szu.edu.cn
|
Cite this article:
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔) Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas 2023 Chin. Phys. B 32 075209
|
[1] ITER Research Plan within the Staged Approach, ITR-18-003, 2018 [2] Knoepfel and Spong D A 1979 Nucl. Fusion 19 785 [3] Reux C, Plyusnin V, Alper B, et al. 2015 Nucl. Fusion 55 093013 [4] Zeng L, Koslowski H R, Liang Y, et al. 2013 Phys. Rev. Lett. 110 235003 [5] Fussmann G 1979 Nucl. Fusion 19 327 [6] Connor J W and Hastie R J 1975 Nucl. Fusion 15 415 [7] Paz-Soldan C, Eidietis N W, Granetz R, et al. 2014 Phys. Plasmas 21 022514 [8] Zhang Y K, Zhou R J, Hu L Q, et al. 2018 Chin. Phys. B 27 055206 [9] Dreicer H 1959 Phys. Rev. 115 238 [10] Dreicer H 1960 Phys. Rev. 117 329 [11] Zeng L, Chen Z Y, Dong Y B, et al. 2017 Nucl. Fusion 57 046001 [12] Zeng L, Koslowski H R, Liang Y, et al. 2015 J. Plasma Phys. 81 475810402 [13] Smith H M and Verwichte E 2008 Phys. Plasmas 15 072502 [14] Ericsson I G, Henlander P, Andersson F, et al. 2004 Phys. Rev. Lett. 92 205004 [15] Tang T, Zeng L, Chen D, et al. 2021 Nucl. Fusion 61 076003 [16] Martín-Solís J R, Loarte A and Lehnen M 2017 Nucl. Fusion 57 066025 [17] Martín-Solís J R, Esposito B, Sanchez, et al. 2006 Phys. Rev. Lett. 97 165002 [18] Sobolev Y M 2013 Probl. At. Sci. Technol. 4 108 [19] Papp G, Drevlak M, Fulop T, et al. 2011 Nucl. Fusion 51 043004 [20] Martin-Solis J R, Esposito B, Sanchez R R, et al. 1999 Phys. Plasmas 6 238 [21] Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293 [22] Bickerton R J 1997 Plasma Phys. Control. Fusion 39 339 [23] Lvovskiy A, Heidbrink W W, Paz-Soldan C, et al. 2019 Nucl. Fusion 59 124004 [24] Liu C, Brennan D P, Lvovskiy A, et al. 2021 Nucl. Fusion 61 036011 [25] Zhu X, Zeng L, Qiu Z Y, et al. 2022 Phys. Plasmas 29 062504 [26] Han X, Liu H, Liu Y, et al. 2014 Rev. Sci. Instrum. 85 073506 [27] Gao X 2007 Phys. Lett. A 372 2286 [28] Zhou R J, Hu L Q, Lu H W, et al. 2007 Phys. Scripta 84 015501 [29] Zhu X, Zeng L, Liang Y, et al. 2020 Nucl. Fusion 60 084002 [30] Gill R D, Alper B, de Baar M, et al. 2002 Nucl. Fusion 42 1039 [31] Helander P, Eriksson L G and Andersson F 2002 Plasma Phys. Control. Fusion 44 B247 [32] Stahl A, Hirvijoki E, Decker J, et al. 2015 Phys. Rev. Lett. 114 115002 [33] Whyte D G, Humphreys D A and Taylor P L 2000 Phys. Plasmas 7 4052 [34] Jayakumar R, Fleischmann H H, Zweben S J, et al. 1993 Phys. Lett. A 172 447 [35] Gorelenkov N N, Pinches S D and Toi K 2014 Nucl. Fusion 54 125001 [36] Lebedev S V, Askinazi L G, Balachenkov I A, et al. 2016 43rd EPS Conference on Plasma Physics p. 5036 [37] Heidbrink W W 2008 Phys. Plasmas 15 055501 [38] Heidbrink W W 2021 Private communication |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|