Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075209    DOI: 10.1088/1674-1056/acac12
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas

Chen-Xi Luo(罗晨曦)1,2, Long Zeng(曾龙)3,†, Xiang Zhu(朱翔)4,‡, Tian Tang(唐天)1,2, Zhi-Yong Qiu(仇志勇)5, Shi-Yao Lin(林士耀)1, Tao Zhang(张涛)1, Hai-Qing Liu(刘海庆)1, Tong-Hui Shi(石同辉)1, Bin Zhang(张斌)1, Rui Ding(丁锐)1, Wei Gao(高伟)1, Min-Rui Wang(王敏锐)1,2, Wei Gao(高伟)1, Ang Ti(提昂)1, Hai-Lin Zhao(赵海林)1, Tian-Fu Zhou(周天富)1, Jin-Ping Qian(钱金平)1, You-Wen Sun(孙有文)1, Bo Lv(吕波)1, Qing Zang(臧庆)1, Yin-Xian Jie(揭银先)1, Yun-Feng Liang(梁云峰)1,6, and Xiang Gao(高翔)1
1 Institute of Plasma Physics, Hefei Institutes of Physics Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230031, China;
3 Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
4 Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China;
5 Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310000, China;
6 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research Plasma Physics(IEK-4), Jülich 52425, Germany
Abstract  The generation of runaway electrons (REs) is observed during the low-density helium ohmic plasma discharge in the Experimental Advanced Superconducting Tokamak (EAST). The growth rate of hard x-ray (HXR) is inversely proportional to the line-average density. Besides, the RE generation in helium plasma is higher than that in deuterium plasma at the same density, which is obtained by comparing the growth rate of HXR with the same discharge conditions. The potential reason is the higher electron temperature of helium plasma in the same current and electron density plateau. Furthermore, two Alfvén eigenmodes driven by REs have been observed. The frequency evolution of the mode is not fully satisfied with the Alfvén scaling and when extension of the Alfvén frequency is towards 0, the high frequency branch is ~ 50 kHz. The different spatial position of the two modes and the evolution of the helium concentration could be used to understand deviation between theoretical and experimental observation.
Keywords:  helium plasma      runaway electron      toroidal Alfvén eigenmode (TAE)      Experimental Advanced Superconducting Tokamak (EAST)  
Received:  06 October 2022      Revised:  18 November 2022      Accepted manuscript online:  16 December 2022
PACS:  52.25.Xz (Magnetized plasmas)  
  52.70.Nc (Particle measurements)  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFE0301205 and 2022YFE03050003), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y2021116), the National Natural Science Foundation of China (Grant Nos. 12005262, 12105186, 12175277, and 11975271), and the Users of Excellence Program of Hefei Science Center CAS (Grant No. 2021HSC-UE016).
Corresponding Authors:  Long Zeng, Xiang Zhu     E-mail:  zenglong@tsinghua.edu.cn;xzhu@szu.edu.cn

Cite this article: 

Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔) Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas 2023 Chin. Phys. B 32 075209

[1] ITER Research Plan within the Staged Approach, ITR-18-003, 2018
[2] Knoepfel and Spong D A 1979 Nucl. Fusion 19 785
[3] Reux C, Plyusnin V, Alper B, et al. 2015 Nucl. Fusion 55 093013
[4] Zeng L, Koslowski H R, Liang Y, et al. 2013 Phys. Rev. Lett. 110 235003
[5] Fussmann G 1979 Nucl. Fusion 19 327
[6] Connor J W and Hastie R J 1975 Nucl. Fusion 15 415
[7] Paz-Soldan C, Eidietis N W, Granetz R, et al. 2014 Phys. Plasmas 21 022514
[8] Zhang Y K, Zhou R J, Hu L Q, et al. 2018 Chin. Phys. B 27 055206
[9] Dreicer H 1959 Phys. Rev. 115 238
[10] Dreicer H 1960 Phys. Rev. 117 329
[11] Zeng L, Chen Z Y, Dong Y B, et al. 2017 Nucl. Fusion 57 046001
[12] Zeng L, Koslowski H R, Liang Y, et al. 2015 J. Plasma Phys. 81 475810402
[13] Smith H M and Verwichte E 2008 Phys. Plasmas 15 072502
[14] Ericsson I G, Henlander P, Andersson F, et al. 2004 Phys. Rev. Lett. 92 205004
[15] Tang T, Zeng L, Chen D, et al. 2021 Nucl. Fusion 61 076003
[16] Martín-Solís J R, Loarte A and Lehnen M 2017 Nucl. Fusion 57 066025
[17] Martín-Solís J R, Esposito B, Sanchez, et al. 2006 Phys. Rev. Lett. 97 165002
[18] Sobolev Y M 2013 Probl. At. Sci. Technol. 4 108
[19] Papp G, Drevlak M, Fulop T, et al. 2011 Nucl. Fusion 51 043004
[20] Martin-Solis J R, Esposito B, Sanchez R R, et al. 1999 Phys. Plasmas 6 238
[21] Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293
[22] Bickerton R J 1997 Plasma Phys. Control. Fusion 39 339
[23] Lvovskiy A, Heidbrink W W, Paz-Soldan C, et al. 2019 Nucl. Fusion 59 124004
[24] Liu C, Brennan D P, Lvovskiy A, et al. 2021 Nucl. Fusion 61 036011
[25] Zhu X, Zeng L, Qiu Z Y, et al. 2022 Phys. Plasmas 29 062504
[26] Han X, Liu H, Liu Y, et al. 2014 Rev. Sci. Instrum. 85 073506
[27] Gao X 2007 Phys. Lett. A 372 2286
[28] Zhou R J, Hu L Q, Lu H W, et al. 2007 Phys. Scripta 84 015501
[29] Zhu X, Zeng L, Liang Y, et al. 2020 Nucl. Fusion 60 084002
[30] Gill R D, Alper B, de Baar M, et al. 2002 Nucl. Fusion 42 1039
[31] Helander P, Eriksson L G and Andersson F 2002 Plasma Phys. Control. Fusion 44 B247
[32] Stahl A, Hirvijoki E, Decker J, et al. 2015 Phys. Rev. Lett. 114 115002
[33] Whyte D G, Humphreys D A and Taylor P L 2000 Phys. Plasmas 7 4052
[34] Jayakumar R, Fleischmann H H, Zweben S J, et al. 1993 Phys. Lett. A 172 447
[35] Gorelenkov N N, Pinches S D and Toi K 2014 Nucl. Fusion 54 125001
[36] Lebedev S V, Askinazi L G, Balachenkov I A, et al. 2016 43rd EPS Conference on Plasma Physics p. 5036
[37] Heidbrink W W 2008 Phys. Plasmas 15 055501
[38] Heidbrink W W 2021 Private communication
[1] Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT
Jin-Yu Xiong(熊金玉), Zhong-He Jiang(江中和), Zi-Xiao Jiao(焦子啸), Zhen Li(李振),Yun-Feng Liang(梁云峰), Zhong-Yong Chen(陈忠勇), Yong-Hua Ding(丁永华), and J-TEXT Team. Chin. Phys. B, 2023, 32(7): 075210.
[2] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[3] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[4] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[5] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[6] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[7] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[8] AC operation and runaway electron behaviour in HT-7 tokamak
Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Zhou Rui-Jie(周瑞杰), Lin Shi-Yao(林士耀), Zhong Guo-Qiang(钟国强), Wang Shao-Feng(王少锋), Chen Kai-Yun(陈开云), Xu Ping(许平), Zhang Ji-Zong(张继宗) Ling Bi-Li(凌必利), Mao Song-Tao(毛松涛), Duan Yan-Min(段艳敏), and HT-7 Team. Chin. Phys. B, 2010, 19(6): 065201.
[9] Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak
Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Li Ya-Dong(李亚东), Zhong Guo-Qiang(钟国强), Lin Shi-Yao(林士耀), Xu Ping(许平), and EAST-Team. Chin. Phys. B, 2010, 19(12): 125201.
[10] Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak
Zhang Yi-Po(张轶泼),Yang Jin-Wei(杨进蔚),Liu Yi(刘仪), Song Xian-Ying(宋先瑛),Yuan Guo-Liang(袁国梁),Li Xu(李旭), Zhou Yan(周艳), Zhou Jun(周俊),Yang Qing-Wei(杨青巍), Chen Liao-Yuan(陈燎原),Rao Jun(饶军),Duan Xu-Ru(段旭如), Pan Chuan-Hong(潘传红), and HL-2A Team . Chin. Phys. B, 2009, 18(12): 5385-5394.
[11] Damaging impacts of energetic charge particles on materials in plasma energy explosive events
Deng Bai-Quan (邓柏权), Peng Li-Lin (彭利林), Yan Jian-Cheng (严建成), Luo Zheng-Ming (罗正明), Chen Zhi (陈志). Chin. Phys. B, 2006, 15(7): 1486-1491.
[12] Numerical simulation of chemical processes in helium plasmas in atmosphere environment
Ouyang Jian-Ming (欧阳建明), Guo Wei (郭伟), Wang Long (王龙), Shao Fu-Qiu (邵福球). Chin. Phys. B, 2005, 14(1): 154-158.
No Suggested Reading articles found!