Special Issue:
SPECIAL TOPIC — Plasma disruption
|
SPECIAL TOPIC—Plasma disruption |
Prev
Next
|
|
|
Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT |
Jin-Yu Xiong(熊金玉)1,2, Zhong-He Jiang(江中和)1,†, Zi-Xiao Jiao(焦子啸)1, Zhen Li(李振)1, Yun-Feng Liang(梁云峰)1,3,4, Zhong-Yong Chen(陈忠勇)1, Yong-Hua Ding(丁永华)1, and J-TEXT Team1 |
1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2 Yangtze Memory Technologies Co., Ltd., Wuhan 430074, China; 3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; 4 Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung-Plasmaphysik, Jülich 52425, Germany |
|
|
Abstract In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron (RE). Motivated by the experiment of multimode coupling to suppress REs on J-TEXT, some typical simulation cases with non-ideal MHD with rotation-open discussion (NIMROD) code are carried out to explore the influential mechanism of different relative phases between m/n = 2/1 and m/n = 3/1 magnetic islands on the confinement of REs. Results show that the RE confinement is drastically affected by the relative phase between 2/1 and 3/1 magnetic islands. When the O point phase of 2/1 and 3/1 magnetic islands is toroidal 330°, REs can be effectively lost. The fitting curve of the remaining ratio of REs vs. the relative toroidal phase is predicted to approximate a sine-like function dependence. Further studies indicate that the phase difference between coexisting 2/1 and 3/1 islands can affect the radial transport of impurities. The loss of runaway electrons is closely related to the deposition effect of impurity. The impurity is easier to spread into the core region with smaller poloidal phase difference between the radial velocity of impurity and the impurity quantity of Ar.
|
Received: 29 December 2022
Revised: 27 February 2023
Accepted manuscript online: 14 March 2023
|
PACS:
|
52.65.Kj
|
(Magnetohydrodynamic and fluid equation)
|
|
52.25.Fi
|
(Transport properties)
|
|
52.25.Vy
|
(Impurities in plasmas)
|
|
47.65.-d
|
(Magnetohydrodynamics and electrohydrodynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175078 and 51821005). The authors are very grateful for the assistance of the NIMROD team. |
Corresponding Authors:
Zhong-He Jiang
E-mail: zhhjiang@hust.edu.cn
|
Cite this article:
Jin-Yu Xiong(熊金玉), Zhong-He Jiang(江中和), Zi-Xiao Jiao(焦子啸), Zhen Li(李振),Yun-Feng Liang(梁云峰), Zhong-Yong Chen(陈忠勇), Yong-Hua Ding(丁永华), and J-TEXT Team Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT 2023 Chin. Phys. B 32 075210
|
[1] Hender T C, Wesley J C, Bialek J, Bondeson A, Boozer A H, Buttery R J, Garofalo A, Goodman T P, Granetz R S and Gribov Y 2007 Nucl. Fusion 47 S128 [2] Wesson J A, Gill R D, Hugon M, Schüller F C, Snipes J A, Ward D J, Bartlett D V and Campbell D J 1989 Nucl. Fusion 29 641 [3] Arnoux G, Loarte A and Riccardo V 2009 Nucl. Fusion 49 085038 [4] Lehnen M, Aleynikova K, Aleynikov P B, Campbell D J, Drewelow P, Eidietis N W, Gasparyan Y, Granetz R S, Gribov Y and Hartmann N 2015 J. Nucl. Mater. 463 39 [5] Matthews G F 2016 Phys. Scripta T167 014070 [6] Riccardo V and JET EFDA contributors 2003 Plasma Phys. Control. Fusion 45 A269 [7] Baylor L R, Barbier C C, Carmichael J R, Combs S K, Ericson M N and Bull N D E 2017 Fusion Sci. Technol. 68 211 [8] Rosenbluth M N and Putvinski S V 1997 Nucl. Fusion 37 1355 [9] Taylor P L, Kellman A G, Evans T E, Gray D S, Humphreys D A, Hyatt A W, Jernigan T C and Lee R L 1999 Phys. Plasmas 6 1872 [10] Commaux N, Baylor L R, Jernigan T C, Hollmann E M, Parks P B, Humphreys D A, Wesley J C and Yu J H 2010 Nucl. Fusion 50 112001 [11] Pautasso G, Fuchs C J, Gruber O, Maggi C F, Maraschek M, Pütterich T, Rohde V, Wittmann C, Wolfrum E, Cierpka P and Beck M 2007 Nucl. Fusion 47 023 [12] Commaux N, Shiraki D, Baylor L R, Hollmann E M, Eidietis N W and Lasnier C J 2016 Nucl. Fusion 56 046007 [13] Reux C, Bucalossi J, Saint-Laurent F, Gil C, Moreau P and Maget P 2010 Nucl. Fusion 50 095006 [14] Pautasso G, Mlynek A, Bernert M, Mank K, Herrmann A, Dux R, Müller H W, Scarabosio A and Sertoli M 2015 Nucl. Fusion 55 033015 [15] Bozhenkov S A, Lehnen M, Finken K H, Jakubowski M W, Wolf R C, Jaspers R, Kantor M, Marchuk O V, Uzgel E and Wassenhove G V 2008 Plasma Phys. Control. Fusion 50 105007 [16] Shiraki D, Commaux N, Baylor L R, Eidietis N W, Hollmann E M, Izzo V A, Moyer R A and Paz-Soldan C 2015 Nucl. Fusion 55 073029 [17] Chen Z Y, Huang D W, Luo Y H, Tang Y, Dong Y B, Zeng L, Tong R H, Wang S Y, Wei Y N and Wang X H 2016 Nucl. Fusion 56 112013 [18] Hollmann E M, Baylor L R, Jernigan T C, Hollmann E M, Humphreys D A, Wesley J C and Izzo V A 2010 Phys. Plasmas 17 056117 [19] Tokuda S and Yoshino R 1999 Nucl. Fusion 39 1123 [20] Papp G, Drevlak M, Fülöp T, Helander P and Pokol G I 2011 Plasma Phys. Control. Fusion 53 095004 [21] Commaux N, Baylor L R, Combs S K, Eidietis N W, Evans T E, Foust C R, Hollmann E M, Humphreys D A and Izzo V A 2011 Nucl. Fusion 51 103001 [22] Lehnen M, Bozhenkov S A, Abdullaev S S, TEXTOR Team and Jakubowski M W 2008 Phys. Rev. Lett. 100 255003 [23] Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293 [24] Gobbin M, Li L, Liu Y Q, Marrelli L, Nocente M, Papp G, Pautasso G, Piovesan P, Valisa M and Carnevale D 2018 Plasma Phys. Control. Fusion 60 014036 [25] Chen Z Y, Huang D W, Izzo V A, Tong R H, Jiang Z H, Hu Q M, Wei Y N, Yan W, Rao B and Wang S Y 2016 Nucl. Fusion 56 074001 [26] Lin Z F, Chen Z Y, Huang D W, Huang J, Tong R H, Wei Y N, Yan W, Li D, Hu Q M and Huang Y 2019 Plasma Phys. Control. Fusion 61 024005 [27] Lin Z F and Chen Z Y 2019 Annual Report IFPP [28] Jiang Z H, Huang J, Tong R H, Yang T T, Lin Z F, Izzo V, Li C H and Liang Y F 2019 Phys. Plasmas 26 062508 [29] Sovinec C R, Schnack D D, Pankin A Y, Brennan D P, Tian H, Barnes D C, Kruger S E, Held E D, Kim C C, Li X S, Kaushik D K, Jardin S C and the NIMROD Team 2005 J. Phys. 16 25 [30] Izzo V A, Whyte D G, Granetz R S, Parks P B, Hollmann E M, Lao L L and Wesley J C 2008 Phys. Plasmas 15 056109 [31] Izzo V A, Hollmann E M, James A N, Yu J H, Humphreys D A, Lao L L and Parks P B 2011 Nucl. Fusion 51 063032 [32] Izzo V A and Parks P B 2017 Phys. Plasmas 24 056102 [33] Jiang Z H, Yang T T, Yuan J J, Li C H, Ye X, Huang J, Liang Y and Izzo V A 2020 Nucl. Fusion 60 066004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|