Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075210    DOI: 10.1088/1674-1056/acc3f9
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT

Jin-Yu Xiong(熊金玉)1,2, Zhong-He Jiang(江中和)1,†, Zi-Xiao Jiao(焦子啸)1, Zhen Li(李振)1, Yun-Feng Liang(梁云峰)1,3,4, Zhong-Yong Chen(陈忠勇)1, Yong-Hua Ding(丁永华)1, and J-TEXT Team1
1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Yangtze Memory Technologies Co., Ltd., Wuhan 430074, China;
3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
4 Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung-Plasmaphysik, Jülich 52425, Germany
Abstract  In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron (RE). Motivated by the experiment of multimode coupling to suppress REs on J-TEXT, some typical simulation cases with non-ideal MHD with rotation-open discussion (NIMROD) code are carried out to explore the influential mechanism of different relative phases between m/n = 2/1 and m/n = 3/1 magnetic islands on the confinement of REs. Results show that the RE confinement is drastically affected by the relative phase between 2/1 and 3/1 magnetic islands. When the O point phase of 2/1 and 3/1 magnetic islands is toroidal 330°, REs can be effectively lost. The fitting curve of the remaining ratio of REs vs. the relative toroidal phase is predicted to approximate a sine-like function dependence. Further studies indicate that the phase difference between coexisting 2/1 and 3/1 islands can affect the radial transport of impurities. The loss of runaway electrons is closely related to the deposition effect of impurity. The impurity is easier to spread into the core region with smaller poloidal phase difference between the radial velocity of impurity and the impurity quantity of Ar.
Keywords:  major disruption      runaway electron      massive gas injection (MGI)      resonant magnetic perturbation (RMP)  
Received:  29 December 2022      Revised:  27 February 2023      Accepted manuscript online:  14 March 2023
PACS:  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  52.25.Fi (Transport properties)  
  52.25.Vy (Impurities in plasmas)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175078 and 51821005). The authors are very grateful for the assistance of the NIMROD team.
Corresponding Authors:  Zhong-He Jiang     E-mail:  zhhjiang@hust.edu.cn

Cite this article: 

Jin-Yu Xiong(熊金玉), Zhong-He Jiang(江中和), Zi-Xiao Jiao(焦子啸), Zhen Li(李振),Yun-Feng Liang(梁云峰), Zhong-Yong Chen(陈忠勇), Yong-Hua Ding(丁永华), and J-TEXT Team Effect of the relative phase between pre-existing 2/1 and 3/1 magnetic islands on the suppression of runaway electrons on J-TEXT 2023 Chin. Phys. B 32 075210

[1] Hender T C, Wesley J C, Bialek J, Bondeson A, Boozer A H, Buttery R J, Garofalo A, Goodman T P, Granetz R S and Gribov Y 2007 Nucl. Fusion 47 S128
[2] Wesson J A, Gill R D, Hugon M, Schüller F C, Snipes J A, Ward D J, Bartlett D V and Campbell D J 1989 Nucl. Fusion 29 641
[3] Arnoux G, Loarte A and Riccardo V 2009 Nucl. Fusion 49 085038
[4] Lehnen M, Aleynikova K, Aleynikov P B, Campbell D J, Drewelow P, Eidietis N W, Gasparyan Y, Granetz R S, Gribov Y and Hartmann N 2015 J. Nucl. Mater. 463 39
[5] Matthews G F 2016 Phys. Scripta T167 014070
[6] Riccardo V and JET EFDA contributors 2003 Plasma Phys. Control. Fusion 45 A269
[7] Baylor L R, Barbier C C, Carmichael J R, Combs S K, Ericson M N and Bull N D E 2017 Fusion Sci. Technol. 68 211
[8] Rosenbluth M N and Putvinski S V 1997 Nucl. Fusion 37 1355
[9] Taylor P L, Kellman A G, Evans T E, Gray D S, Humphreys D A, Hyatt A W, Jernigan T C and Lee R L 1999 Phys. Plasmas 6 1872
[10] Commaux N, Baylor L R, Jernigan T C, Hollmann E M, Parks P B, Humphreys D A, Wesley J C and Yu J H 2010 Nucl. Fusion 50 112001
[11] Pautasso G, Fuchs C J, Gruber O, Maggi C F, Maraschek M, Pütterich T, Rohde V, Wittmann C, Wolfrum E, Cierpka P and Beck M 2007 Nucl. Fusion 47 023
[12] Commaux N, Shiraki D, Baylor L R, Hollmann E M, Eidietis N W and Lasnier C J 2016 Nucl. Fusion 56 046007
[13] Reux C, Bucalossi J, Saint-Laurent F, Gil C, Moreau P and Maget P 2010 Nucl. Fusion 50 095006
[14] Pautasso G, Mlynek A, Bernert M, Mank K, Herrmann A, Dux R, Müller H W, Scarabosio A and Sertoli M 2015 Nucl. Fusion 55 033015
[15] Bozhenkov S A, Lehnen M, Finken K H, Jakubowski M W, Wolf R C, Jaspers R, Kantor M, Marchuk O V, Uzgel E and Wassenhove G V 2008 Plasma Phys. Control. Fusion 50 105007
[16] Shiraki D, Commaux N, Baylor L R, Eidietis N W, Hollmann E M, Izzo V A, Moyer R A and Paz-Soldan C 2015 Nucl. Fusion 55 073029
[17] Chen Z Y, Huang D W, Luo Y H, Tang Y, Dong Y B, Zeng L, Tong R H, Wang S Y, Wei Y N and Wang X H 2016 Nucl. Fusion 56 112013
[18] Hollmann E M, Baylor L R, Jernigan T C, Hollmann E M, Humphreys D A, Wesley J C and Izzo V A 2010 Phys. Plasmas 17 056117
[19] Tokuda S and Yoshino R 1999 Nucl. Fusion 39 1123
[20] Papp G, Drevlak M, Fülöp T, Helander P and Pokol G I 2011 Plasma Phys. Control. Fusion 53 095004
[21] Commaux N, Baylor L R, Combs S K, Eidietis N W, Evans T E, Foust C R, Hollmann E M, Humphreys D A and Izzo V A 2011 Nucl. Fusion 51 103001
[22] Lehnen M, Bozhenkov S A, Abdullaev S S, TEXTOR Team and Jakubowski M W 2008 Phys. Rev. Lett. 100 255003
[23] Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293
[24] Gobbin M, Li L, Liu Y Q, Marrelli L, Nocente M, Papp G, Pautasso G, Piovesan P, Valisa M and Carnevale D 2018 Plasma Phys. Control. Fusion 60 014036
[25] Chen Z Y, Huang D W, Izzo V A, Tong R H, Jiang Z H, Hu Q M, Wei Y N, Yan W, Rao B and Wang S Y 2016 Nucl. Fusion 56 074001
[26] Lin Z F, Chen Z Y, Huang D W, Huang J, Tong R H, Wei Y N, Yan W, Li D, Hu Q M and Huang Y 2019 Plasma Phys. Control. Fusion 61 024005
[27] Lin Z F and Chen Z Y 2019 Annual Report IFPP
[28] Jiang Z H, Huang J, Tong R H, Yang T T, Lin Z F, Izzo V, Li C H and Liang Y F 2019 Phys. Plasmas 26 062508
[29] Sovinec C R, Schnack D D, Pankin A Y, Brennan D P, Tian H, Barnes D C, Kruger S E, Held E D, Kim C C, Li X S, Kaushik D K, Jardin S C and the NIMROD Team 2005 J. Phys. 16 25
[30] Izzo V A, Whyte D G, Granetz R S, Parks P B, Hollmann E M, Lao L L and Wesley J C 2008 Phys. Plasmas 15 056109
[31] Izzo V A, Hollmann E M, James A N, Yu J H, Humphreys D A, Lao L L and Parks P B 2011 Nucl. Fusion 51 063032
[32] Izzo V A and Parks P B 2017 Phys. Plasmas 24 056102
[33] Jiang Z H, Yang T T, Yuan J J, Li C H, Ye X, Huang J, Liang Y and Izzo V A 2020 Nucl. Fusion 60 066004
[1] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[2] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[3] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[4] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[5] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[6] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[7] AC operation and runaway electron behaviour in HT-7 tokamak
Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Zhou Rui-Jie(周瑞杰), Lin Shi-Yao(林士耀), Zhong Guo-Qiang(钟国强), Wang Shao-Feng(王少锋), Chen Kai-Yun(陈开云), Xu Ping(许平), Zhang Ji-Zong(张继宗) Ling Bi-Li(凌必利), Mao Song-Tao(毛松涛), Duan Yan-Min(段艳敏), and HT-7 Team. Chin. Phys. B, 2010, 19(6): 065201.
[8] Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak
Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Li Ya-Dong(李亚东), Zhong Guo-Qiang(钟国强), Lin Shi-Yao(林士耀), Xu Ping(许平), and EAST-Team. Chin. Phys. B, 2010, 19(12): 125201.
[9] Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak
Zhang Yi-Po(张轶泼),Yang Jin-Wei(杨进蔚),Liu Yi(刘仪), Song Xian-Ying(宋先瑛),Yuan Guo-Liang(袁国梁),Li Xu(李旭), Zhou Yan(周艳), Zhou Jun(周俊),Yang Qing-Wei(杨青巍), Chen Liao-Yuan(陈燎原),Rao Jun(饶军),Duan Xu-Ru(段旭如), Pan Chuan-Hong(潘传红), and HL-2A Team . Chin. Phys. B, 2009, 18(12): 5385-5394.
[10] Damaging impacts of energetic charge particles on materials in plasma energy explosive events
Deng Bai-Quan (邓柏权), Peng Li-Lin (彭利林), Yan Jian-Cheng (严建成), Luo Zheng-Ming (罗正明), Chen Zhi (陈志). Chin. Phys. B, 2006, 15(7): 1486-1491.
No Suggested Reading articles found!