Abstract We propose a new generalized Su-Schrieffer-Heeger model with hierarchical long-range hopping based on a one-dimensional tetratomic chain. The properties of the topological states and phase transition, which depend on the cointeraction of the intracell and intercell hoppings, are investigated using the phase diagram of the winding number. It is shown that topological states with large positive/negative winding numbers can readily be generated in this system. The properties of the topological states can be verified by the ring-type structures in the trajectory diagram of the complex plane. The topological phase transition is strongly related to the opening (closure) of an energy bandgap at the center (boundaries) of the Brillouin zone. Finally, the non-zero-energy edge states at the ends of the finite system are revealed and matched with the bulk-boundary correspondence.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11405100), the Natural Science Basic Research Program in Shaanxi Province of China (Grant Nos. 2022JZ-02, 2020JM-507, and 2019JM-332), the Doctoral Research Fund of Shaanxi University of Science and Technology in China (Grant Nos. 2018BJ-02 and 2019BJ-58), and the Youth Innovation Team of Shaanxi Universities.
Corresponding Authors:
Guan-Qiang Li
E-mail: liguanqiang@sust.edu.cn
Cite this article:
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟) Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping 2023 Chin. Phys. B 32 077102
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys.82 3045 [2] Qi X L and Zhang S C 2011 Rev. Mod. Phys.83 1057 [3] Berry M V 1984 Proc. R. Soc. Lond A392 45 [4] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys.82 1959 [5] Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys.91 015005 [6] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett.49 405 [7] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn.74 1674 [8] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett.42 1698 [9] Zak J 1989 Phys. Rev. Lett.62 2747 [10] Li L, Xu Z and Chen S 2014 Phys. Rev. B89 085111 [11] Rufo S, Lopes N, Continentino M A and Griffith M A R 2019 Phys. Rev. B100 195432 [12] Pérez-González B, Bello M, Gómez-Leṕn Á and Platero G 2019 Phys. Rev. B99 035146 [13] Martinez Alvarez V M and Coutinho-Filho M D 2019 Phys. Rev. A99 013833 [14] Anastasiadis A, Styliaris G, Chaunsali R, Theocharis G and Diakonos F K 2022 Phys. Rev. B106 085109 [15] Guo H M and Chen S 2015 Phys. Rev. B91 041402 [16] Eliashvili M, Kereselidze D, Tsitsishvili G and Tsitsishvili M 2017 J. Phys. Soc. Jpn.86 074712 [17] Marques A M and Dias R G 2020 J. Phys. A: Math. Theor.53 075303 [18] He Y and Chien C C 2021 J. Phys.: Condens. Matter33 085501 [19] Zhang Y, Ren B, Li Y and Ye F 2021 Opt. Express29 42827 [20] Marques A M and Dias R G 2019 Phys. Rev. B100 041104 [21] Nehra R and Roy D 2022 Phys. Rev. B105 195407 [22] Bahari M and Hosseini M V 2020 Physica E119 113973 [23] Ahmadi N, Abouie J and Baeriswyl D 2020 Phys. Rev. B101 195117 [24] Li C, Lin S, Zhang G and Song Z 2017 Phys. Rev. B96 125418 [25] Zhao X L, Chen L B, Fu L B and Yi X X 2020 Ann. Phys. (Berlin)532 1900402 [26] Borja C, Gutiérrez E and López A 2022 J. Phys.: Condens. Matter34 205701 [27] Shen S Q 2017 Topological insulators: Dirac equation in condensed matters (2nd edn.) (Singapore: Springer Nature) p. 81 [28] Asbóth J K, Oroszlany L and Pályi A 2016 A short course on topological insulators: Band-structure topology and edge states in one and two dimensions (Lecture Notes in Physics, Vol. 919) (Springer Cham) [29] Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q and Chan C T 2015 Nat. Phys.11 240 [30] Li X, Meng Y, Wu X, Yan S, Huang Y, Wang S and Wen W 2018 Appl. Phys. Lett.113 203501 [31] Zhu X Y, Wang H Q, Gupta S K, Zhang H J, Xie B Y, Lu M H and Chen Y F 2020 Phys. Rev. Research2 013280 [32] Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T and Thomale R 2018 Commun. Phys.1 39 [33] Liu S, GaoW, Zhang Q, Ma S, Zhang L, Liu C, Xiang Y J, Cui T J and Zhang S 2019 Research2019 8609875 [34] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys.9 795 [35] Meier E J, An F A and Gadway B 2016 Nat. Commun.7 13986 [36] Maffei M, Dauphin A, Cardano F, Lewenstein M and Massignan P 2018 New J. Phys.20 013023 [37] Bid S and Chakrabarti A 2022 Phys. Lett. A423 127816 [38] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys.88 035005 [39] Xie D, Gou W, Xiao T, Gadway B and Yan B 2019 npj Quantum Inf.5 55 [40] Li J R, Zhang L L, Cui W B and Gong W J 2022 Phys. Rev. Research4 023009 [41] Zhou X F, Pan J S and Jia S T 2023 Phys. Rev. B107 054105 [42] Lee C S, Io I F and Kao H C 2022 Chin. J. Phys.78 96 [43] Chen H T, Chang C H and Kao H C 2021 Chin. J. Phys.72 50 [44] Zurita J, Creffield C and Platero G 2019 Adv. Quantum Technol.3 1900105 [45] Wang H X, Guo G Y and Jiang J H 2019 New J. Phys.21 093029
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.