Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050306    DOI: 10.1088/1674-1056/acbd2a
GENERAL Prev   Next  

Quantum state protection from finite-temperature thermal noise with application to controlled quantum teleportation

Chi Wang(王驰), Sajede Harraz†‡, Jiao-Yang Zhang(张骄阳), and Shuang Cong(丛爽)
Department of Automation, University of Science and Technology of China, Hefei 230027, China
Abstract  We propose a quantum state protection scheme via quantum feedforward control combined with environment-assisted measurement to protect arbitrary unknown initial states from the finite-temperature thermal noise (FTTN). The main strategy is to transfer the quantum system to a noise-robust state by weak measurement and feedforward control before the noise channel. Then we apply the environment-assisted measurement on the noise channel to select our desired damped states that are invertible to the initial state. After the noise channel, the reversal operations are applied to restore the initial state. We consider the protection of a single-qubit system, derive the analytical expressions of the success probability and the fidelity, and analyze the influence of key parameters on the performance of the proposed scheme. Unlike previous studies, there is no trade-off between the fidelity and the success probability in the proposed scheme; hence one could maximize them separately. Simulation results show that the proposed scheme can greatly improve the fidelity of the quantum state with a certain success probability. Moreover, the proposed scheme is successfully applied to improving the fidelity of controlled quantum teleportation through two independent FTTN channels from the perspective of protecting the shared entanglement.
Keywords:  quantum feedforward control      environment-assisted measurement      weak measurement      quantum teleportation  
Received:  11 November 2022      Revised:  07 February 2023      Accepted manuscript online:  20 February 2023
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61973290), and a Program from Ministry of Science and Technology of China (Grant No. QN2022200007L).
Corresponding Authors:  Sajede Harraz     E-mail:  sajede@ustc.edu.cn

Cite this article: 

Chi Wang(王驰), Sajede Harraz, Jiao-Yang Zhang(张骄阳), and Shuang Cong(丛爽) Quantum state protection from finite-temperature thermal noise with application to controlled quantum teleportation 2023 Chin. Phys. B 32 050306

[1] Cong S and Kuang S 2020 Control Theory and Methods of Quantum Systems (Hefei: University of Science and Technology of China Press) pp. 32-33 (in Chinese)
[2] Diamanti E, Lo H, Qi B and Yuan Z 2016 npj Quantum Inf. 2 16025
[3] Cozzolino D, Da L B and Bacco D 2019 Adv. Quantum Technol. 2 1900038
[4] Hassanpour S and Houshmand M 2016 Quantum Inf. Process. 15 905
[5] Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70
[6] Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 SIAM J. Comput. 26 1510
[7] Shahandeh F, Lund A P and Ralph T C 2019 Phys. Rev. A 99 052303
[8] Beale S J, Wallman J J, Gutiérrez M, Brown K R and Laflamme R 2018 Phys. Rev. Lett. 121 190501
[9] Chao R and Reichardt B W 2018 Phys. Rev. Lett. 121 050502
[10] Roffe J 2019 Contemp. Phys. 60 226
[11] Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R and Taminiau T H 2016 Nat. Commun. 7 11526
[12] Grassl M, Kong L, Wei Z, Yin Z Q and Zeng B 2018 IEEE Trans. Inf. Theory 64 4674
[13] Lidar D A, Bacon D and Whaley K B 1999 Phys. Rev. Lett. 82 4556
[14] Kwiat P G, Berglund A J, Altepeter J B and White A G 2000 Science 290 498
[15] Chen M, Kuang S and Cong S 2017 J. Frankl. Inst. 354 439
[16] Friesen M, Ghosh J, Eriksson M A and Coppersmith S N 2017 Nat. Commun. 8 15923
[17] Pokharel B, Anand N, Fortman B and Lidar D A 2018 Phys. Rev. Lett. 121 220502
[18] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[19] Pryadko L P and Quiroz G 2009 Phys. Rev. A 80 042317
[20] Du J, Rong X, Zhao N, Wang Y, Yang J H and Liu R B 2009 Nature 461 1265
[21] Almog I, Sagi Y, Gordon G, Bensky G, Kurizki G and Davidson N 2011 J. Phys. B: At. Mol. Opt. Phys. 44 154006
[22] Cao W C, Liu X S, Bai H B and Long G L 2007 Sci. China Ser. G-Phys. Mech. Astron. 51 29
[23] Harraz S, Cong S and Nieto J J 2022 Int. J. Quantum Inf. 20 2250007
[24] Wang M J, Xia Y J, Li Y D, Yang Y, Cao L Z, Zhang Q W and Zhao J Q 2020 Int. J. Theor. Phys. 59 3696
[25] Li Y L, Zu C J and Wei D M 2019 Quantum Inf. Process. 18 2
[26] Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C and Bartlett S D 2007 Phys. Rev. A 75 012329
[27] Gillett G G, Dalton R B, Lanyon B P, Almeida M P, Barbieri M, Pryde G J, O'Brien J L, Resch K J, Bartlett S D and White A G 2010 Phys. Rev. Lett. 104 080503
[28] Yang Y, Zhang X Y, Ma J and Yi X X 2013 Phys. Rev. A 87 012333
[29] Xiao X and Feng M 2011 Phys. Rev. A 83 054301
[30] Harraz S, Cong S and Kuang S 2019 J. Syst. Sci. Complex. 32 1264
[31] Harraz S, Cong S and Shuang F 2018 IEEE 7th Data Driven Control and Learning Systems Conference, May 25-27, 2018, Enshi, China, p. 302
[32] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103
[33] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[34] Wakamura H, Kawakubo R and Koike T 2017 Phys. Rev. A 96 022325
[35] Wakamura H, Kawakubo R and Koike T 2017 Phys. Rev. A 95 022321
[36] Wang C Q, Xu B M, Zou J, He Z, Yan Y, Li J G and Shao B 2014 Phys. Rev. A 89 032303
[37] Harraz S, Cong S and Li K 2020 Quantum Inf. Process. 19 250
[38] Huang J H and Zhu S Y 2007 Phys. Rev. A 76 062322
[39] Knoll L T, Schmiegelow C T and Larotonda M A 2014 Phys. Rev. A 90 042332
[40] Yang W, Ma W L and Liu R B 2016 Rep. Prog. Phys. 80 016001
[41] Harraz S, Cong S and Nieto J J 2021 Eur. Phys. J. Plus 136 851
[42] Nielsen M A and Chuang I 2002 Am. J. Phys. 70 558
[43] Mendonca P E M F, Napolitano R J, Marchiolli M A, Foster C J and Liang Y C 2008 Phys. Rev. A 78 052330
[44] Liang Y C, Yeh Y H, Mendonca P E M F, Teh R Y, Reid M D and Drummond P D 2019 Rep. Prog. Phys. 82 076001
[45] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[5] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[8] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[9] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[12] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[13] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[14] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[15] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
No Suggested Reading articles found!